鋼橋の頑強な防食技術及び 合理的な腐食診断と補修技術

鋼橋の構造性能と耐久性能研究委員会 腐食耐久性能研究部会報告

長岡技術科学大学 岩崎英治

部会メンバー

主査	岩崎 英治	長岡技術科学大学	
幹事長	下里 哲弘	琉球大学	
連絡幹事	髙木 優任	日本製鉄	
幹事	石川 敏之	関西大学	
幹事	斉木 功	東北大学	
幹事	中村 聖三	長崎大学	
幹事	佐々木 栄一	東京科学大学	
委員	荒牧 聡	建設技術研究所	
委員	石川 裕一	中日本ハイウェイ・エンジニアリング名古屋	
委員	梶田 太一	川田工業	2022年2月から
委員	加瀬 駿介	阪神高速道路	2024年3月まで
委員	加藤 真志	JFEスチール	2024年3月まで
委員	井上 凌	JFEスチール	2024年4月から
委員	木村 雅昭	東京ファブリック工業	2024年10月まで
委員	久慈 茂樹	東京ファブリック工業	2024年11月から
委員	志村 保美	日鉄ステンレス	2023年3月まで
委員	江目 文則	日鉄ステンレス	2023年4月から
委員	武野 正和	日本製鉄	
委員	田中 俊介	日本建設機械施工協会 施工技術総合研究所	
委員	田中 裕明	JFEエンジニアリング	
委員	玉城 喜章	沖縄しまたて協会 技術環境研究所	
委員	永井 政伸	首都高速道路	2023年3月まで

委員	副島 直史	首都高速道路	2023年4月から2024年6月まで
委員	石橋 正博	首都高速道路	2024年7月から
委員	長坂 康史	川田工業	
委員	永谷 秀樹	宮地エンジニアリング	
委員	秀熊 佑哉	日鉄ケミカル&マテリアル	
委員	日和 裕介	首都高技術	
委員	藤川 敬人	日鉄エンジニアリング	
委員	政門 哲夫	日本エンジニアリング	
委員	松下 裕明	日立造船	
委員	松下 政弘	神戸製鋼所	
委員	三浦 進一	JFEスチール	
委員	矢ヶ部 菜月	H	
委員	八木 孝介	横河ブリッジホールデイングス	2023年12月まで
委員	加藤 健太郎	横河ブリッジホールデイングス	2024年1月から
委員	山下 修平	宮地エンジニアリング	
委員	湯瀬 文雄	神戸製鋼所	2024年3月まで
委員	阪下 真司	神戸製鋼所	2024年4月から
オブザーバー	鎌田 将史	国土技術政策総合研究所	2022年3月まで
オブザーバー	塚原 宏樹	国土技術政策総合研究所	2022年4月から2023年3月まで
オブザーバー	青野 拓也	国土技術政策総合研究所	2023年4月から
オブザーバー	坂本 佳也	土木研究所	2023年3月まで
オブザーバー	小野 健太	土木研究所	2023年4月から

部会報告の構成

A. 多様な腐食特性に対する合理的な防食使用の提案(新設,既設)

- 架設環境と腐食部位別の腐食特性に応じた防食仕様(新設)
- 腐食しやすい構造部位の高防食技術(既設)

B. 腐食損傷の生じた鋼構造・部位の合理的な診断技術,補修法

- 合理的な点検・診断の提案のための構造冗長性評価
- 腐食損傷の生じた鋼部材の健全度評価の検討
- 補修法の力学メカニズムと合理的な断面補修法の検討

鋼橋の構造性能と耐久性能研究委員会

腐食耐久性研究部会

サブテーマ:合理的防食方法の提案

【新設橋テーマ1】 ステンレス鋼を用いたハイブリッド桁端構造の開発

【研究内容】

■使用材料と組合せ

■溶接性

■組合せ材料特性(引張強度と応力-ひずみ特性)

■耐久性(鋼材腐食,疲労強度)

<桁端部へのステンレス鋼の適用>

※ステンレス鋼構造物の設計・施工指針(案)より 炭素鋼とステンレス鋼の応力ひずみ関係の例 ・炭素鋼は一般的な鋼材

・ステンレス鋼は製作性および炭素鋼の強度と市場性を考慮 ・溶接金属は炭素鋼による希釈と強度を考慮

・炭素鋼の強度に合わせたステンレス鋼を選定

組合せ	炭素鋼	溶接金属	ステンレス鋼
	SM400	309L	SUS304
2	SM490Y	309L	SUS821L1

■マクロエッチング

■曲げ試験, 放射線透過試験

組合せ	結果
SUS304 – SM400	欠陥なし
SUS821L1—SM490YB	欠陥なし

■引張試験

・溶接の溶込み良好
 ・その他試験でも内部欠陥無
 ・引張試験で炭素鋼側母材破断 (炭素鋼母材強度以上)

7

【異種金属接触腐食試験】

【新設橋テーマ2】 ステンレスクラッド鋼を用いた鋼橋の研究開発

ステンレスクラッド鋼の適用

US合せ材

炭素鋼

炭素鋼溶接

【複合サイクル腐食促進試験】

・JASO M609に準拠した試験を実施
・試験体表面のさび発生程度をレイティングナンバー
に準拠して整理

試験完了時(155サイクル)の試験体表面状態

SUS304 SUS316L SUS329J3L JSL310Mo

 合せ材材質
 一般部
 溶接部

 SUS304
 5℃で孔食発生
 5℃で孔食発生

 SUS316L
 15℃で孔食発生
 20℃で孔食なし

 SUS329J3L
 50℃で孔食なし
 40℃で孔食発生

 JSL310Mo
 70℃で孔食発生
 75℃で孔食なし

鋼桁間の腐食耐久性向上のために設置した多機能防食 デッキの巨大耐風下での安全性を実物試験橋で確認

<u>風上</u>

【既設橋テーマ1】 残さび面上におけるコールドスプレーの防食性能

コールドスプレー(CS)皮膜の防食機構検証 及び実橋モニタリングによる実証

【コールドスプレー工法概要】

【残さび上のCS皮膜の防食機構検証】

気孔率が低く緻密 であるため,腐食 因子の透過を阻止 する<mark>環境遮断層</mark>と して有効

平均気孔率: 1.8% (Gas flame: 10.1%)

二值化処理画像

1. 高カボルト: 透明ボルトキャップ 【実橋モニタリング】

2. 板エッジ: SUS-flake含有塗装系

ボルトキャップなし ボルトキャップあり

【ACMセンサによる評価】

上フランジ平坦部膜厚 212 µm (標準膜厚 250 µ)

下面側

状態把握のための計測・非破壊評価

Oトルシアボルトの場合のボルト軸力

非破壊評価手法の検討(渦電流計測)Oボルト頭部に損傷がある場合の軸力への影響

省工程重防食塗装の検討

目的

短工期で施工でき,長期耐久性を確保できる,省工程重防食塗装 (下塗り・上塗り各1層まで)仕様の確立

• 検討対象塗装仕様

Case	下 塗 り	膜厚	上塗り	膜厚
		μ m		$\mu \mathrm{m}$
1	超厚膜無溶剤形セラミックエポキシ樹脂塗料	750	水性ふっ素樹脂	25
			塗料	
2	厚膜無溶剤形セラミックエポキシ樹脂塗料	500	水性ふっ素樹脂	25
			塗料	
3	高遮断形変性エポキシ樹脂塗料弱溶剤形塗料	120	高耐久厚膜ふっ素	55
			樹脂塗料	
4	高遮断形変性エポキシ樹脂塗料弱溶剤形塗料	120	弱溶剤厚膜ふっ素	55
			樹脂塗料	
5	高遮断形厚膜変性エポキシ樹脂塗料弱溶剤形塗料	300	弱溶剤厚膜ふっ素	55
			樹脂塗料	

- 実施項目
 - 促進試験(単膜, 複膜での複合サイクル試験)
 - 屋外暴露試験

実施試験(試験片〈150mm×75mm×3.2mm、1種ケレン(ブラスト)〉)

① 促進試験(目視,付着力で評価)

・単膜の複合サイクル試験(JIS K5600-7-9サイクルD):1.5年間(12,960時間) 6か月のワッペン試験片腐食減耗量:11.3g

・ 複膜の複合サイクル試験(ISO12944-9改定版):1.0年間(8,640時間)
 6か月のワッペン試験片腐食減耗量:21.3g

実施試験(試験片〈150mm×75mm×3.2mm、1種ケレン(ブラスト)〉)

屋外暴露試験(目視,付着力で評価):最低2年間

促進試験

①③④⑤は優れており、重防食塗装と扱える。但し、同じ仕様でも試験片により差があり、コバ面部の薄い塗膜から腐食が発生
 ⇒ コバ面のR加工、増し塗りによる設計塗膜厚の確保が必要

サブテーマ2:構造冗長性評価に基づいた合理的な診断技術の提案

- 冗長性評価の事例・手法調査
 - ✓ 形式別の冗長性評価事例
 - ✓ 連続多主鈑桁橋の冗長性評価
 - ▶ 主桁数が冗長性に及ぼす影響
 - ▶ 床版の進行性破壊を考慮した桁橋の損傷程度と冗長性の関係
 - ✓ 鋼トラス橋における立体機能保持に関する検討
 - ▶ 2次部材が立体機能・冗長性に及ぼす影響

4径間連続5主鈑桁橋G1桁中間支点損傷時の崩壊過程(f=6.8まで)

f=0.7:G1上部床版下側ひび割れ

f=0.9:主桁降伏

f=2.5: 対傾構降伏

f=3.0:G2G3上部床版下側ひび割れ f=4.8:主桁の塑性ひずみ0.5%

G1端支点損傷に比べて破壊の進展が早い(主桁降伏2.9, 塑性ひずみ0.9)

主桁降伏に関する冗長性(中間支点損傷)

- 主桁降伏限界は,損傷桁の数が同じとき外桁に損傷のある場合は中桁に 損傷がある場合のおよそ55-70%
- 主桁降伏限界は、外桁に損傷があるとき、損傷桁の数が増えるとおよそ 55-70%となる。
- 中間支点損傷時は、主桁降伏限界が端支点損傷時よりも小さい、この理 由は、中間支点ではせん断力・曲げモーメントともに大きいため、(局 所的な降伏も生じる)

鋼トラス橋における立体機能保持に関する検討

橋が立体的に機能する構造となるようにしなければならない

道示II15.4.1(1)

立体的な機能の確保

- 定量的な要求水準や評価方法は示されてない
- •実質的に仕様規定に近い形の規定と なっている

横構やストラットの腐食はどこまで許容できるか?

▶ 横構やストラットがない場合の耐荷力の 低下を定量的に評価する

2次部材欠損時の立体機能・冗長性評価

JSSC腐食耐久性能部会

- サブテーマ③ 腐食損傷の生じた鋼部材の健全度評価の検討
- 構造部位で異なる腐食進行度に対応した健全度評価法の提案
- (1) 健全性評価法の検討対象部位の選定
- → 冗長性の低い構造部位,損傷の発生事例の多い部位など
- (2) 腐食損傷の程度に応じた措置判断に寄与する健全度評価 法の検討
- → 腐食減肉の生じた部位・部材の応力状態を簡易に評価
- → 健全度・損傷度のレベル分け
- トラスガセット下部の腐食: ガセット両側に斜材のあるトラス形式 ガセット片側に斜材のあるトラス形式
- トラス圧縮斜材を構成する板の溶接部の腐食: 板の1辺に腐食切れを生じた場合 板の相対する2辺に腐食切れを生じた場合
- 桁橋下フランジの腐食:
 正曲げを受ける下フランジが腐食減肉した場合
 負曲げを受ける下フランジが腐食減肉した場合

トラスガセット部の腐食

トラス斜材の溶接部の腐食

I桁橋下フランジの腐食

圧縮斜材の一部に腐食による溶接部の分離(腐食切れ)を生じた場合の座屈強度の検討

トラス斜材の溶接部の腐食

● 一部に自由辺を有する板の座屈強度式の検討

腐食切れによる局部座屈

● 圧縮斜材の連成座屈強度式の検討

一部に自由辺を有する板の座屈強度式の検討

既往の座屈強度式

- $\frac{\sigma_u}{\sigma_Y} = \left(\frac{a_1}{R}\right)^{a_2}$
- $\frac{\sigma_u}{\sigma_Y} = a_1 + a_2 R + a_3 R^2 + a_4 R^3$
- $\frac{\sigma_u}{\sigma_Y} = a_1 + \frac{a_2}{R} + \frac{a_3}{R^2} + \frac{a_4}{R^3}$
- $\frac{\sigma_u}{\sigma_Y} = \frac{1}{2R} \left(\beta \sqrt{\beta^2 4R} \right) \quad \beta = a_1 + a_2 R$

腐食切れ比 a/b

斜材の全体座屈と板の局部座屈の連成座屈強度式の検討

健全性レベルの提案

レベル	座屈強度	対応方針例
1	設計時作用応力以上	腐食の進行を抑える措置
2	実作用応力以上,設計時作用	補修計画を立て、数年以内に
	応力以下	補修
3	永続作用応力以上,実作用応	通行制限を実施し、速やかに
	力以下	補修
4	永続作用応力以下	通行止めを実施し,緊急補修

JSSC腐食耐久性部会V期(2020年から5年間)研究計画案

サブテーマ④ : 補修法の力学メカニズムと合理的な断面補修法の検討

- → 腐食部位の力学特性を考慮した補修技術の評価
 - : 荷重伝達、座屈耐荷力、防食持続性、疲労耐久性の検証(実験、解析) (当て板高力ボルト接合, CFRP接着接合, その他接着併用接合に対して, 引張 部材, 圧縮部材, 曲げ部材などの荷重伝達メカニズム, 耐荷力向上メカニズム)
 - : 腐食凹凸面、残存さびを除去できる技術又は許容する技術 (文献調査,現場調査)

腐食損傷部材の高力ボルト当て板補修の力学メカニズム (2022年までに解明)

欠損部を跨ぐボルト間で変位の適合条件を 与えて断面欠損部の母材の応力を推定 (断面欠損長が影響)

弾性範囲内の断面欠損部の分担軸力が推定できた³²

腐食損傷部材の高力ボルト当て板補修の力学メカニズム (2024-2025年) トラス部材など、部材レベルを対象に、断面欠損

トラス部材など、部材レベルを対象に、断面欠損部の分担断面力を評価する.

2024年までに解明

ボルト間長での変位の適合条件

腐食損傷部材の高力ボルト当て板補修の力学メカニズム (2024-2025年) _{主桁ウェブからフランジに荷}

桁など,部材レベルを対象に,断面欠損部の分 担断面力を評価する.

主桁ウェブからフランジに荷重の再分 配があるため, せん断遅れ理論(4階 の微分方程式)を用いた評価を実施.

