合理化設計研究部会

ー設計合理化と維持管理に向けたLoad Ratingの試みー

埼玉大学 奥井義昭

合理化設計研究部会 (II期)

活動期間:2018-2019年度 委員会メンバー

主査

奥井義昭	埼玉大学
副主査	
入部孝夫	日本橋梁建設協会
幹事長	
宮下 剛	長岡技術科学大学
連絡幹事	
栗原康行	日本鉄鋼連盟
幹事	
小室雅人	室蘭工業大学
葛西 昭	熊本大学
髙木優任	日本鉄鋼連盟
野阪克義	立命館大学

前田和裕	オリコン
松下政弘	日本鉄鋼連盟
山口隆司	大阪市立大学
委員	
浅井貴幸	東日本高速道路
飯嶋 淳	JIPテクノサイエンス
刑部清次	長大
長田隆信	首都高速道路
加藤真志	日本鉄鋼連盟
岸 祐介	首都大学東京
斉藤雅充	鉄道総合技術研究所
谷口望	前橋工科大学
田村洋	東京工業大学

長山智則 東京大学
橋本国太郎 神戸大学
日野昭二 建設コンサルタンツ協会
宮嵜靖大 長岡工専
森山仁志 熊本大学
オブザーバー
岡田太賀雄 国総研
坂本佳也 土木研究所

- (1) 単リブ圧縮補剛板の終局と使用限界強度の検討
- (2) Load ratingによる既設橋梁の評価
- (3) 合成桁適用拡大に向けての検討
- (4) 柱の連成座屈評価の検討
- (5) 耐震解析に使用可能な鋼材の弾塑性パラメータの検討

赤字:本日の発表項目

単リブ圧縮補剛板の終局と使用限界強度の検討

- 長岡高専 宮嵜
- 埼玉大学 奥井

背景と今までの経緯

補剛板設計式の問題点

現在の道示:金井らの研究[1977]

- ・2本以下の縦リブに実験結果より提案
- SBHSなどが反映されていない
- 許容応力度設計法を対象とした強度

第I期での検討内容

• 縦リブ2-3本の補剛板

第II期での検討内容

・単リブ補剛板 → 狭幅Box桁対応

単リブ補剛板の終局強度・使用強度の検討

目的:

終局・使用強度の平均値と標準偏差の算定 設計指針案の提案

検討方法:

実験によるFEM解析の検証 非線形FEM解析+MCシミュレーション or 有限差分近似 考慮した確率変数:

残留応力、初期面外変位(全体モード、局部モード)

クライテリア:

終局強度=最大耐力

使用強度=面外変位の限界値(部材製作精度限界の面外変位)

SBHS500補剛板の載荷試験

目的

SBHS500の強度試験データ

供試体

- 角柱供試体(板厚6mm)
- ・幅厚比パラメータ R_r=0.5, 1.2
- 鋼材:SBHS500, SM490Y

試験項目

- •残留応力,初期変位,
- 軸圧縮試験, 材料試験

SBHS500角柱の軸圧縮試験:断面図

実験結果とFEMの比較

FEM: 残留応力,初期変位も供試体の計測値をモデル化

FEMの終局強度の精度確認

終局強度(ULS)(縦リブ1本, 2-3本)

使用限界強度(SLS)曲線

縦補剛材本数による 強度の差異ほとんど無い

 \rightarrow

幅広補剛板の結果を使用限界強度曲 線とする

注記

Rr >1.0では

(使用強度) > 0.75(終局強度) より,終局強度で決定されるため,計算 していない

AASHTO, Eurocodeの橋梁の計算例から (使用時断面力) ~ 0.75(終局時断面力)

MCS=モンテカルロシミュレーション FDA=有限差分近似

設計法のフローチャート

補剛板のまとめ

■補剛板の新しい設計法の枠組みを説明

✓狭幅補剛板,通常,(幅広な補剛板)

✓終局強度と使用強度の多段階設計法への対応が可能

□確率論的根拠のある限界強度を提案

□実構造物への効果

✓狭幅箱桁→強度up

✓縦リブ2-3本→Rr<0.8で強度down, Rr>0.8で強度up

✓幅広箱桁→合理化補剛板

□奈良式を用いれば,

✓柱座屈モード強度評価可能

✓縦補剛材剛比の終局限界強度への影響を評価可能

参考:Eurocodeによる柱座屈の補剛板の例

- Eurocodeでは柱座屈モード, 強度は全強の81%
- 道示,補剛板間のサブパネル座屈,強度は全強の89%
- ・ 道示の必要剛比の1.6倍の縦リブ
- 道示では柱座屈モードの強度を予測することが出来ない
- Eurocodeで柱座屈に対して補剛板を設計する際に大型の縦リブを使う傾向

Load ratingによる既設橋梁の評価 長岡技術科学大学 宮下 埼玉大学 奥井

Load Ratingとは?

点検結果に基づき設計活荷重に対する 余裕度をRF値で数値化

Rating Factor
$$RF = \frac{\phi_c \phi_s C - \gamma_D D}{\gamma_L (L+I)}$$

RF値は設計活荷重の 何倍大丈夫かを表す値

D = 死荷重効果 γ_D = 死荷重係数 L = 活荷重効果 γ_L = 活荷重係数 I = 衝撃 ϕ_c = 状態係数(点検結果より) ϕ_s = システム係数(リダンダンシーの考慮)

判定	
$RF \ge 1.0$	→ 安全
RF < 1.0	→ 耐荷力不足

ケーススタディのモデル橋

A橋

4 @ 3500 = 14000

モデル名	A橋	B橋	N橋
形式	合成	合成	非合成
	単純桁	単純桁	連続桁
スパン(m)	34.4	39.3	3@28
竣工年	1971	1983	1975
活荷重	TL-20	TL-20	TL-20

$$RF = \frac{\phi_c \phi_s C - \gamma_D D}{\gamma_L (L+I)}$$

D = 死荷重効果
 L = 活荷重効果(国内:B活荷重,AASHTO:HL-93)
 衝撃

無損傷でシステム係数は1.0と仮定

I =

基準	耐力 C	死荷重係数 <i>Υ</i> d	活荷重係数 <i>Υ</i> ∟
旧道示	許容応力 σ_a	1.00	1.00
新道示	応力制限値	1.05	1.25
JSCE 標準示方書	設計曲げ耐力 M _{rd}	1.70	1.70
AASHTO MBE	公称曲げ耐力 M _n	1.50(舗装) 1.25(その他)	1.75 設計時レベル

AASHTO = MBE

設計時レベル $\gamma_{L} = 1.75 として計算$ 基準交通荷重HL-93

A, B橋: 合成桁(コンパクト断面) 終局耐力=全塑性モーメント JSCE, AASHTOで耐力増加 合成桁のためM_{ol}/M_v=1.36

N橋:非合成桁(コンパクト断面) 終局耐力=全塑性モーメント 鋼断面のためM_{pl}/M_y=1.12

今期のテーマ

- ・システムリダンダンシーの考慮
- ・日本版Load ratingマニュアルの作成

システム・リダンダンシーとは?

2種類のリダンダンシー

- After-fracture Redundancy → 部材破断後の耐力
- System Redundancy

→ 部材耐力と橋梁全体系の耐荷力の差

設計では

部材の終局 = 橋梁全体系の終局 としているが…実際には構造システムによっては大きな差がある

部材強度と全体耐荷力の比較

FEMモデル

- 床版:ソリッド要素
- ・ 主桁:シェル要素
- 対傾構など: 梁要素
- 材料非線形:考慮
- 幾何学的非線形:非考慮

荷重載荷方法と終局判定

荷重載荷方法

(1) 死荷重係数 1.05まで載荷
・ 合成桁では前死:鋼断面に,後死:合成断面
(2) 活荷重係数λを増加

終局判定

- A, B橋 (単純合成桁):
 - コンクリート床版ひずみ=0.0035が床版幅の30%
- N橋(非合成連続桁):

支間中央:下フランジのひずみ=降伏ひずみの10倍 中間支点上:

終局時の応力・ひずみ分布

終局時=床版幅の30%が圧縮ひずみ0.0035

負けモーメントとたわみの関係

□曲線の終点が終局点
 A, B橋(合成桁):床版の終局ひずみ0.0035
 N橋(非合成桁):支間中央下フランジひずみ10 ε_y

□ 耐荷性能(最大活荷重係数)は異なるが, 終局時の曲げモーメントは同じ

□3橋とも全塑性モーメントに達している (水平な黒線:全塑性モーメント)

□連続桁では支間中央が終局になる前に中間支 点上の横倒れ座屈で終局 (●LTB:中間支点での横倒れ座屈による終局)

リダンダンシーのメカニズム

G1桁 塑性化→剛性低下 →曲げモーメントG2へ移行 → G2剛性低下 →曲げモーメントG3へ移行 → G3剛性低下 →…

線形解析:

モーメント再配分考慮出来ない 非線形解析:

剛性低下によるモーメント再配分考慮

システム係数の定義:

線形解析で求まるRF値を非線形解析で求まるRF値に変換する係数

終局時の活荷重係数 $\lambda = 非線形解析$ $\lambda^* = 線形解析$

$$RF = \frac{\phi_c \phi_s C - \gamma_D D}{\gamma_L (L+I)}$$

 $D = 死荷重効果 <math>\gamma_D = 死荷重係数$ $L = 活荷重効果 <math>\gamma_L = 活荷重係数$ I = 衝撃 $\phi_c = 状態係数(点検結果より)$

奥井ら:鋼橋のシステムリダンダンシーの評価方法とLoad rating におけるシステム係数の提案,構造工学論文集, Vol.68A, 2022

システム係数のまとめ

「橋梁評価マニュアル」(案)を作成

目次 はじめに 2 評価手順 2.1 RF值評価式 2.2 限界状態 2.3 状態係数による点検結果の考慮 2.4 システム・リダンダンシー 2.5 点検不可部材の取り扱い 3 材料強度 4 荷重 4.1 死荷重と荷重係数 4.2 活荷重と荷重係数 4.3 その他の荷重 5 抵抗值 5.1 主桁の曲げ 5.2 主桁のせん断 5.3 合成応力度 5.4 支点上補剛材 6 構造解析 **6.1 格子解析による方法** 6.2 高度な構造解析による方法

20

柱の連成座屈評価

東京都立大学 岸 長岡工業高等専門学校 宮嵜

SBHS500を用いた箱形断面部材の載荷試験の再現解析

・対象:溶接箱形断面圧縮部材(鋼トラス橋など)

2017, 2018年度に圧縮試験を実施済

- •SBHS-1:連成座屈 ($R = 0.9, \lambda = 0.6$)
- ・SBHS-2:全体座屈($R = 0.7, \lambda = 0.6$)
- 道路橋示方書の基準
 (積公式)より

試験機へのセットアップ状況

解析で考慮した条件

- 材料構成則:材料試験結果より
 - flange : $\sigma_y = 566.8 [\text{N/mm}^2]$
 - $E_1 = 211.2 [GPa]$
 - web : $\sigma_y = 570.7 [N/mm^2]$

 $E_1 = 207.8 [GPa],$

- 初期たわみ:3次元レーザー計測結果
- 残留応力:切断法により計測
- → 三角形分布 $\sigma_{rt} = 1.0\sigma_y$, $\sigma_{rc} = 0.2\sigma_y$
- 境界条件: 両端ピン

実験結果一再現解析結果の比較 (P-S関係)

・SBHS-1(連成座屈):
耐荷力は解析結果が実験値より5.5%大きくなり、ピーク時変形量も36%大きくなった.
・SBHS-2(全体座屈):
耐荷力は解析結果が実験値より2.2%小さくなり、ピーク時変形量も16%小さくなった.
→ 再現解析の結果は,2体の試験体で実験結果との <u>大小関係が異なる</u> .
ただし,耐荷力自体は6%以内の精度で推定される結果が得られた.

SBHS-1:連成座屈(R = 0.9, $\lambda = 0.6$)

SBHS-2:連成座屈 (*R*=0.7, λ=0.6)

●実験結果と再現解析結果で、変形性状については一致する結果が得られなかった.
 → SBHS-1:連成座屈試験体においては、局所的な変形が大きく現れた位置は近い
 ●初期たわみを導入しても変形モードが異なる
 →境界条件の再現性について、さらなる検討が必要(SBHS-2:全体座屈試験体)

無補剛箱形断面圧縮部材の耐荷力評価式

耐荷力評価式の推定精度検証

- 積公式 解析結果の関係と比較すると,評価式により求まる値は全体的に 数値<u>解析結果と概ね良い一致を示す</u>
- ●幅厚比パラメータの設定範囲(0.5≦ R ≦1.5)の外の結果について、今後検討の必要がある(特にRの値が小さくなる厚板の範囲など)

既設トラス橋を対象とした断面実績調査

対象:鋼トラス橋を構成するI形,H形断面部材

・2003~2008年完成の17橋のトラス橋を対象

・斜材、垂直材、その他(上横構、上支材など)

・2-PLをフランジ、1-PLをウェブとして整理(右図参考)

既設トラス橋を対象とした断面実績調査

 ・幅厚比パラメータとしては、フランジ、ウェブともに0.7以上のの採用実績も多く、最大で1.3以上の値となる
 ・斜材の使用鋼種には、SMA490W、SM490級の使用実績が多く、 垂直材は使用実績がSM400級となっている

SBHS500を使用したH形断面部材の載荷実験計画

H形断面部材(事前解析結果,変形性状)

今後・・・載荷実験、パラメトリック解析を実施予定

連成座屈のまとめ

- •SBHS500を用いた無補剛箱形断面部材の圧縮載荷試験について、耐荷力については有限要素解析によって6%以内の精度で 推定が可能
- ・幅厚比パラメータ R を変数とする関数 χ を、道示の全体座屈の特性値 ρ_{crg} に乗じる形で、連成座屈強度を精度よく評価する方法を提示した
- ・今後、I形、H形断面部材について検討を進めて行く予定

研究グループ全体の予定

	~FY2020	FY2021	FY2022	FY2023	
補剛板の終局と使用 強度	幅中小補剛板終局・使 用強度の検討 分散シミュレーション	幅広補剛板の検討 縦補剛材剛比の検討	設計式と指針案提案	終了	
Load rating	ケーススタディの実施 リダンダンシーの検討 既設橋耐荷力評価マ ニュアル(案)作成	終了			
合成桁適用拡大	ハイブリッド桁の検証 連続桁曲げ耐力数値解 析計画	各強度評価のための数 値解析	限界状態の整理	橋軸直角方向の地震荷 重による損傷も考慮し た設計指針案の検討	
柱連成座屈	無補剛箱断面載荷実験 設計式の検討	箱断面連成座屈実験, 箱断面設計式提案	H断面連成座屈実験 FEM事前解析	実験再現解析 FEMパラスタ 確率情報の検討	
耐震設計へのSBHS 適用	SM570繰返し載荷材料 試験とデータ公開 構成則評価	SBHS500鋼製橋脚の 解析的耐震評価	地震後の局部降伏した 部材の残存耐荷力の評 価	破壊靱性評価 交番試験の解析	
テクニカルレポート					

No.119