INDIA Technologies Customized List

Technologies One by One Sheets

&

2022 version Part 2: EAF (v.4.2)

Recommended technologies for energy-saving, environmental protection and recycling in Indian iron and steel industry

The Japan Iron and Steel Federation

Introduction

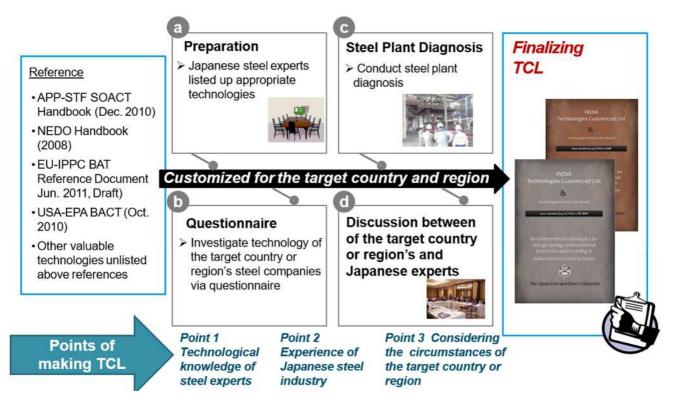
Overview

"Technologies Customized List" is a technology reference containing energy-saving, environmentalprotection and recycling technologies, developed under a collaborative scheme of "The Public and Private Collaborative Meeting between Indian and Japanese Iron and Steel Industry". The list is aimed at identifying appropriate technologies for the Indian steel industry in order to encourage energy saving and sustainable development of Indian steel industry.

The list reflects the knowledge acquired from public and private experiences of the Japanese steel industry, which achieves the highest energy efficiency in the world, and the technology needs of Indian steel industry. In this context, contents of the list are informative for public sectors for development of policies and measures, as well as for private sectors for the plan of the technology introduction and improvement of energy management activities in steel plants.

After the publication of the Technologies Customized List version 1 (2013), version 2 (2014), and version 3 (2017), the list was employed on many occasions such as Steel Plant Diagnosis and Public and Private Collaborative Meetings and Workshops. Based on the discussion at the 8th PPC meeting on the growing importance of small and medium size steel plants, it was proposed to update Technologies Customized List to include technologies for EAF plants. Thus, Technologies Customized List version 4 (2019) was compiled as two-part series: Part-1 for BF-BOF plants, and Part-2 for EAF plants. Technologies Customized List 2022 version adds several new technologies and includes updated reference information and supplier contact.

Thus, Technologies Customized List version 4 (2019) was compiled as two-part series: Part-1 for BF-BOF plants, and Part-2 for EAF plants. Technologies Customized List 2022 version adds several new technologies and includes updated reference information and supplier contact.



Development process of Technologies Customized List

Technologies on the Technologies Customized List are considered to contribute to energy saving and environmental protection in Indian steel industry. They were chosen from several technology references^{*1} in the world, based on the following criteria.

- 1. **Coverage**: Technologies Customized List contains the technologies for energy saving, environmental protection and recycling in the steel plants in India. Technologies for other purposes, such as quality improvement and production increase, are not covered in Technologies Customized List.
- 2. **Availability**: Target technologies should be commercially available. Technologies under development in Japan, which the supplier companies are not ready to diffuse in India, are not eligible for Technologies Customized List.
- 3. Experience: Steel experts in Japan have technological knowledge and experiences.

Development of Technologies Customized List

Technologies Customized List 2022 version January, 2022

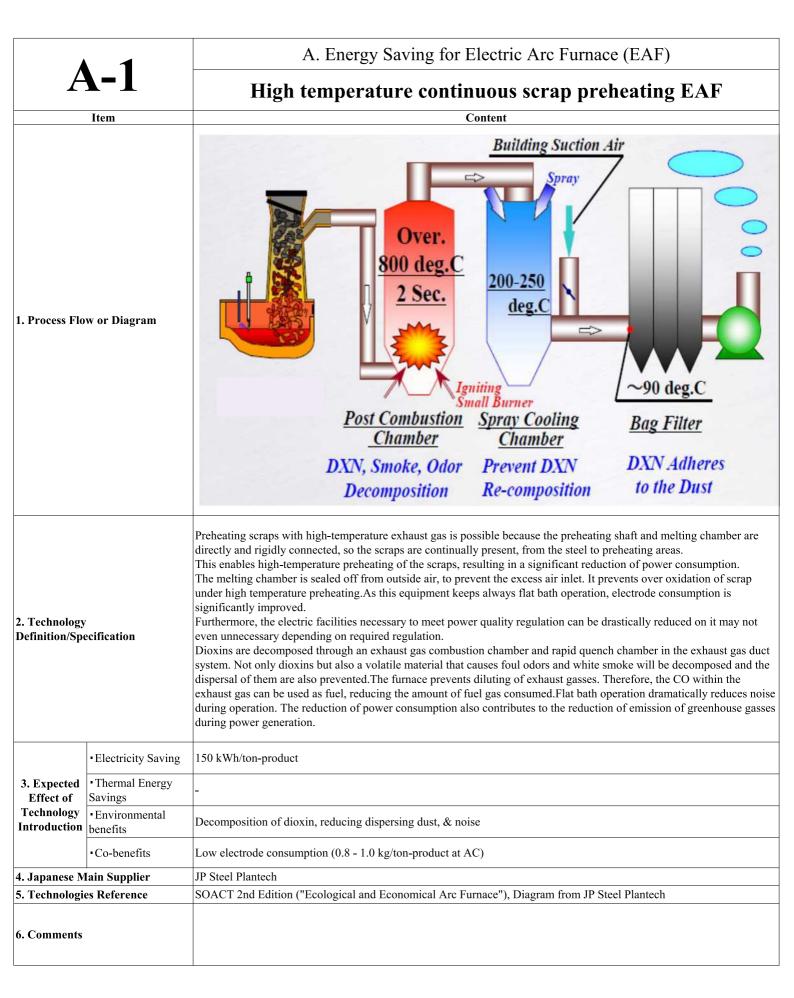
- NEDO Handbook
- EU-IPCC BAT
- USA-EPA-BACT

^{*1} Reference List

[•] The State–of-the-Art Clean Technologies (SOACT) for Steelmaking Handbook

Table of Contents

1. Technologies Customized List	4
2. Technologies One-by-One Sheet	7
Contact Points of Suppliers	42
ANNEX 1 Used Values and Applied Preconditions	44


1. Technologies Customized List

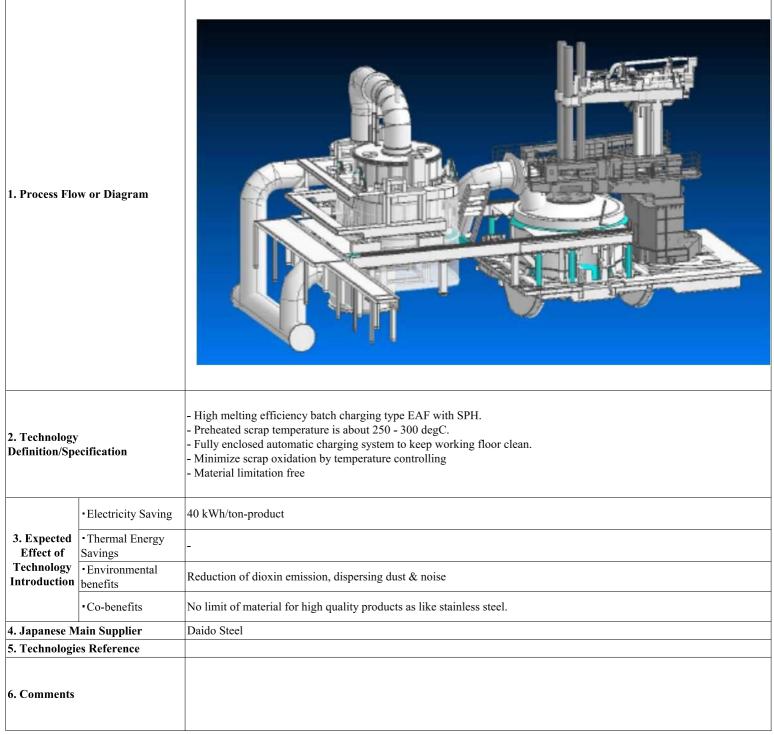
Technologies Customized List for Energy Saving, Environmental Protection, and Recycling for Indian Steel Industry 2022 version part 2: EAF (v.4.2)

						Expe	Assumed investment cost				
				Electricity	Thermal	CO2	Profit of 2)			Assumed investment	
No.	ID	Title of technology	Technical description	saving	energy saving	reduction	Operation cost	Environmental	Co-benefits	cost 4)	Payback time
					(GJ/t of product)	(kg-CO2/t of product)	(US\$/t of product, Japan)	benefits	Co-Denerity	(million US\$ in Japan)	(year in Japan)
A.E	A. Energy Saving for Electric Arc Furnace (EAF)										
1	A-1	High temperature continuous scrap preheating EAF	Combination of the technologies of - Air tight structure - High temperature scrap preheating (over 700 degC) - Continuous preheated scrap charging - Automatic process control by using data logging - Post-combustion of generated CO gas - Dioxin decomposition by secondary combustion	150.0	-	135.75	21.45	- Decomposition and reduction of dioxin, dispersing dust, & noise	- Low electrode consumption (0.8 - 1.0 kg/ton-product at AC)	38.00	3.5
2	A-2	Medium temperature batch scrap preheating EAF	High melting efficiency batch charging type EAF with SPH. Preheated scrap temperature is about 250 - 300 degC. Fully enclosed automatic charging system to keep working floor clean. Minimize scrap oxidation by temperature controlling Material limitation free	40.0	-	36.20	5.72	- Reduction of dioxin emission, dispersing dust, & noise	-No limit of material for high quality products as like stainless steel.	10.00	3.5
3	A-3	High efficiency oxy-fuel burner/lancing for EAF	- Supersonic or coherent burner - Accelerate scrap melting during melting stage - Facilitate slag foaming during refining stage over the bath	14.3	-	12.94	2.04	-	 Reduction of nitorgen in steel for quality improvement 	2.05	2.0
4	A-4	Eccentric bottom tapping (EBT) on existing furnace	- Slag free tapping - Reliable stopping and scraping mechanism	15.0	-	13.58	2.15	-	 Increase in Fe & alloy yield, productivity Improve steel quality 	4.00	3.7
5	A-5	Ultra high-power transformer for EAF	 Long arc by high voltage and low ampere operation Water cooled wall-panel to protect refractories 	15.0	-	13.58	2.15	-	- Procuctivity increase	5.66	5.3
6	A-6	Optimizing slag foaming in EAF	 Proper chemical ingredients of slag High efficient burner and/or lance Controlled O2 & C injection into EAF proper position Keeping slag thickness with air-tight operation 	6.0	-	5.43	0.86	- Noise reduction & working floor cleaning	-	1.50	3.5
7	A-7	Optimized power control for EAF	Data logging and visualization of melting process Automatic judgement on meltdown and additional scrap charge Automatioc phase power independent control for well- balanced melting	15.0	-	13.58	2.15	-	- Productivity increase - Manpower saving	2.50	2.3
8	A-8	Operation support system with EAF meltdown judgment	Automatic Rapid Melting system - Data logging - Optimum electric power control - Alloy calculation - Automatic meltdown Judgment	6.0	-	5.43	0.74	-	 Productivity increase Manpower saving Operation standardization 	0.65	1.5
9	A-9	Low NOx regenerative burner system for ladle preheating	- Regenerating burner use - High Energy Saving (about 40 %) - Automatic control - FDI Combustion	-	0.20	12.62		- NOx reduction	Contribute to better atmosphere around at workfloor	0.40	0.2
10	A-10	Oxygen burner system for ladle preheating	 Rapid and high temperature ladle heating by oxygen burner Automatic control High Energy Saving (about 40 %) 	-	0.20	12.62		- NOx reduction	Contribute to better atmosphere around at workfloor	0.30	0.2
11	A-11	Waste heat recovery from EAF	- Waste heat boiler based on the OG boiler technology - Specified for splash and dust containing	132.0	-	119.46	18.88	-	-	60.00	6.4
12	A-12	Energy saving for dedusting system in EAF meltshop	- Damper openings and exhaust fan rotation are controlled in consonance - Combination of VVVF and proper damper opening	6.0	-	5.43	0.86	 Better working floor & atmosphere 	-	0.80	1.9
13	A-13	Bottom stirring/stirring gas injection	- Inject innert gas (Ar or N2) into the bottom of EAF - Better heat transfer steel quality	18.0	-	16.29	2.57	-	- Fe yield increase 0.5 %	0.26	0.2
14	A-14	Induction type tundish heater	- Application of induction heating - Possible to uniformize temperature in 3 minutes after power supply	3.0	-	2.72	0.43	-	-	1.00	4.7
15	A-15	Scrap pretreatment with scrap shear	- - Long size or low bulk-density scrap is shredded and packed. - Scrap pretreatment decreases the scrap-charging frequency, which will lead to energy saving.	20.0	-	18.10	2.86	-	Fe yield increase in 1.5 % (by Non-integrated steel producer's association)	3.80	2.7
16	A-16	Arc furnace with shell rotation drive	By rotating furnace shell 50 degree back-and-force, cold spot will be decreased to realize smooth melting. Assumed investment cost is the increase from the newly constructed conventional EAF.	32.0	-	28.96	4.58	-	- Decreasing power-on time, melting fuel, and refractory material	6.00	2.6

						Expected e	ffects of introduction		Assumed inve	stment cost
				Electricity	Thermal	Profit of 2)			Assumed investment	
No.	ID	Title of technology	Technical description		energy saving	Operation cost	Environmental		cost 4)	Payback time
				(kWh/t	(GJ/t	(US\$/t of	benefits	Co-benefits	(million US\$	
				of product)	of product)	product, Japan)			in Japan)	(year in Japan)
B. Eı	nvironı	nental Protection for Electi	ric Arc Furnace							
		Exhaust gas treatment through	- Improved design configuration of the direct evacuation for							
17	B-1	gas cooling, carbon injection,	treating hot unburned gas from much fuel use - Minimize dust and gas dispersion from EAF with enough	-	-	-	 Better workfloor & environment 	-	-	
		and bag filter dedusting for EAF	capacity and suitable control							
							- Restrict dust loading			
18	B-2	Floating dust control in EAF meltshop	- Analyze air flow in EAF building	-	-	-	on working floor to less than 5 mg/m ³	-	1.00	
			Destroyed constitution of a climated and an first deaths with a fi				uian 5 mg/m			
19	B-3	Dioxin adsorption by activated carbon for EAF exhaust gas	 Packaged cartridges of activated carbon fixed at the exit of bag-filter adsorbs and removes dioxins and heavy metals to an 	-	-	-	- Dioxin will be lower than 0.5 ng TEQ/m ³ N	-	-	
		carbon for Era chiada gas	extremely low levels				than 0.5 ng TEQ/II N			
20	B-4	Dioxin adsorption by mixing EAF exhaust gas with building	- Cooling direct evacuation gas by mixing with building	_	_		- Dioxin will be lower	_	_	
20	5.	dedusting gas	dedusting gas				than 5.0 ng TEQ/m ³ N			
21	B-5	Dioxin absorption by 2 step bagfilter technology for EAF	 2 step bag system can remove over 99% DXN's from EAF. This system provide a clean working environment. 	-	-	-	- Dioxin will be lower	-	-	
		exhaust gas	- Effective evacuation decrease the consumption of electricity.				than 0.5 ng TEQ/m ³ N			
			Characel made from DKS can be used instead of injected colta				20.000 ton CO2///			
22	B-6	PKS charcoal use for EAF	 Charcoal made from PKS can be used instead of injected coke into EAF. 	-	-	-	- 39,000 ton-CO2/y GHG reduction	-	-	
C. M	aterial	Recycle for Electric Arc F	urnace						· · · · · · · · · · · · · · · · · · ·	
		EAF dust and slag recycling	- Zn recovery rate will be expected to be 95%					- Zn material and heavy		
23	C-1	system by oxygen-fuel burner	-Remove heavy metals from dust and turn into harmless	-	-	-	-	aggregate can be gained from EAF dust	-	
24	C-2	EAF slag agglomeration for	 Molten slag is rapidly cooled by jet air, and becomes 0.5 - 3.0 mm heavy and strong ball. 	-	-	-	- Slag satisfies the safety	- Saved processing time:	1.00	
		aggregate use	- Suited to use aggregate mixed with cement				code	10 minutes		
D. Eı	nergy S	Saving for Reheating Furna	ace			1				
25	D-1	Process control for reheating	 Setting furnace temperature by targeted billet temperature curve 		0.050	0.96			2.50	5.2
25	D-1	furnace	 Precise air ratio control and O2 analysis in exhaust gas 	-	0.050	0.96	-	-	2.50	5.2
		Low NOx regenerative burner								
26	D-2	total system for reheating furnace	- High efficient and durable burner system	-	0.189	3.61	- CO2 & NOx Reduction	-	8.00	4.4
27	D-3	High temperature recuperator for reheating furnace	 Heat transfer area is expanded Special material tube is used instead of stainless 	-	0.100	1.91	-	-	1.50	1.6
							D. I			
28	D-4	Fiber block for insulation of reheating furnace	 Low thermal conductivity High temperature change response (low thermal-inertia) 	-	0.039	0.75	 Reduction of Heat accumulation 	-	1.50	4.0
			Compensate temperature drop of billets transferred from CC to							
		Induction type billet heater for	rolling mill (from 950 degC to 1050 degC). Advantages :				- Better working floor &			
29	D-6	direct rolling	- Automatic control	-40.0	1.45	21.99	atmosphere	-	1.00	0.1
			- Less exhaust gas (without reheating furnace)							
			Thermal energy will be reduced with the decrease in the volume							
20	D 7	Oxygen enrichment for	of exhaust gas. Assumed oxygen percentage in combustion air is		0.21	1.70	- Smaller exhaust gas			
30	D-7	combusiotn air	39 % in the study. Equipment of oxygen generator is not estimated, it is sometime rental use. Only electric power to	-23.6	0.26	1.59	volume from the stack		-	
			generate pxygen is examined (0.5 kWh/m3N)							
E. Co	ommon	systems and General Ener	gy Savings							
			Applying the Multi-Level Drive for motors enables to save							
31	E 1	Inverter (VFD; Variable	energy cost from vane and valve control (constant speed motor). 'Eco-Friendly	120/			- CO2 Reduction		1.50	
51	E-1	Frequency Drive) drive for motors	Power Source Friendly Less Maintenance	13%	-	-	- CO2 Reduction	-	1.50	
			Motor Friendly							
\vdash										
32	E-2	Energy monitoring and management systems	- Energy data are collected in process computer for evaluation	-	0.120	2.29	-	-	-	
\vdash			- Energy saving in compressors requires consideration of the							
33	E-3	Management of compressed air	following points.	285	-	_	_	_		
	2-3	delivery pressure optimization	* Selection of the appropriate capacity * Reduction in delivery pressure	MWh/y	-		-	-		
			Silicon-carbide parts are inserted into the radiant tube to							
34	E-4	Highly efficient combustion	promote heat transfer from hot gas to the tube, which improve	-	0.0896	1.71	- CO2 Reduction	-	2.90	2.9
		system for radiant tube burner	thermal efficiency of the furnace. Production of the target plant is assumed as 594,000 ton/y (CGL) with natural gas use.							
		I	· · · · · · · · · · · · · · · · · · ·	I	1	1		1	L	

2. Technologies One by One Sheets

A-2


Item

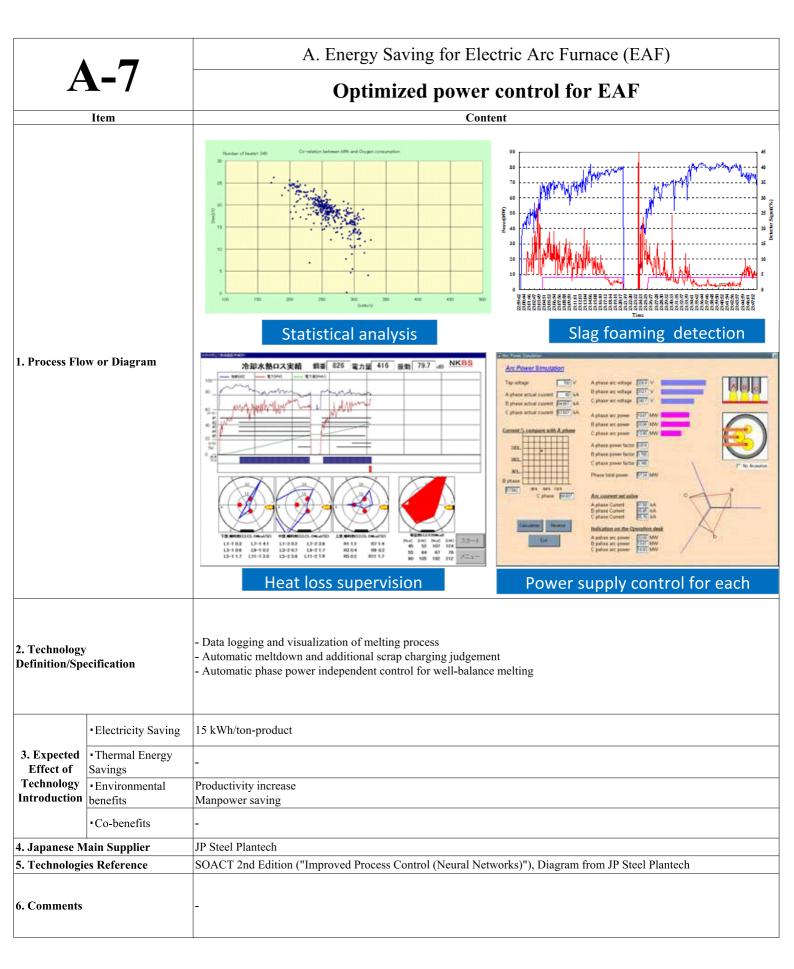
A. Energy Saving for Electric Arc Furnace (EAF)

Medium temperature batch scrap preheating EAF

Content

High efficiency oxy-fuel burner/lancing for EAF

Item		Content
Item		<image/>
2. Technology Definition/Spo		 'Conventional oxygen lances inserted through slag door causes; Local oxygen input near the slag door Uneven slag foaming through the bath Uneven post-combustion of generated CO Much hot gas escape caused by the cold air infiltration through the slag door
	Electricity Saving	14.3 kWh/ton-product
3. Expected Effect of	• Thermal Energy Savings	-
Technology Introduction	•Environmental benefits	-
•Co-benefits		Reduction of nitorgen in steel, quality improvement
4. Japanese Main Supplier		Daido Steel, Nikko, JP Steel Plantech
5. Technologies Reference6. Comments		SOACT 2nd edition (Add the word "High efficiency" to SOACT item for up-to-date oxygen use), Diagram from Nikko Source of "Electricity saving"> 0.14 GJ/ton in SOACT> 0.14 x 9.8/1000 = 14.3 kWh/ton

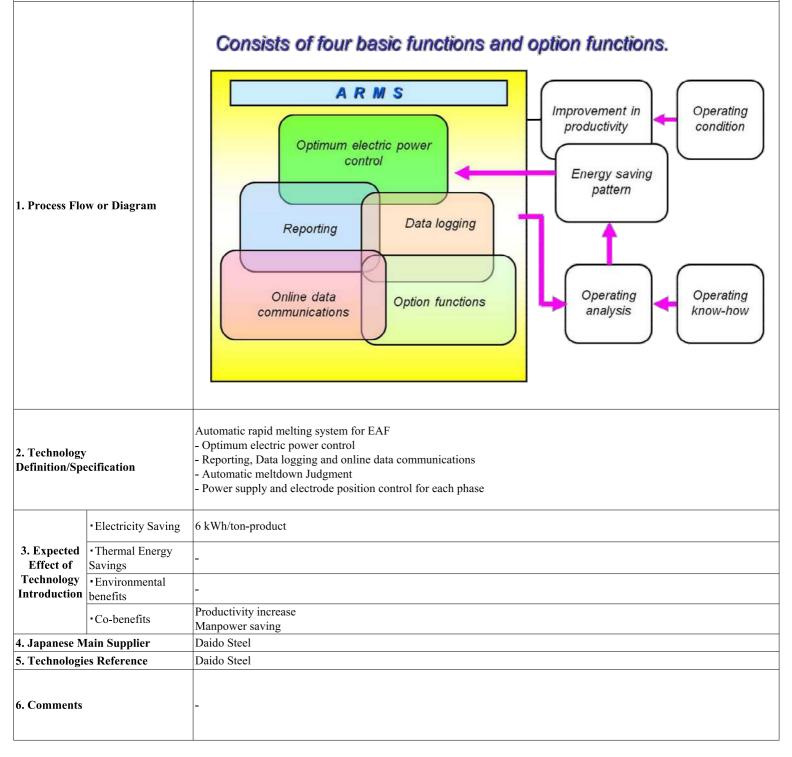

			A. Energy Saving for Electric Arc Furnace (EAF)						
P	\-4	Eccentric bottom tapping (EBT) on existing furnace							
	Item			Content Image: Conten	Concept and tapping Effect of EBT				
. Process Flo	w or Diagram		Effect of EB	т	Mainfactors				
		Category	Item	Effect	Main factors				
			1. Yield of Alloys	Si:15-100%↑	Slag free tapping				
			2. Yield of Fe	Fe:1.1%↑	Slag free tapping, Hot heel				
			3. Electric power consumption	7 - 25 kWh/t↓	Hot heel				
		Cost	4. Electrode consumption	0.2 - 0.4 kg/t↓	Hot heel \rightarrow Decrease of Electric power \rightarrow High power factor				
			5. Refractory consumption	Wall: 23 - 64%↓ Ladle: 9 - 54%↓	- Increase of water cooled area - Slag free tapping				
			6. Lime consumption	15 - 25%↓	Hot heel				
		Produc- tivity	1. Tap - to - On 2. On - to - Tap	1.0 - 3.0 min.↓ 1.0 - 7.2 min.↓	Shortened Hot repair, Shortened Tilting for Tapping, Decrease of Electrode con.				
		Quality	1. Dephosphorus	16 - 28% ↑	Hot heel				
			2. Inclusion	Total [O] 1 - 3ppm					
2. Technology Definition/Spe		' - Tilting angle fo ' - Tapping hole is ' - Slag free tapping	s plugged with silicon sand af	ventional sput tapping, and o ter tapping, which is held by	quick tappping and returning are possible. y stopping mechanism.				
	Electricity Saving	15 kWh/ton-prod	uct						
3. Expected Effect of	• Thermal Energy Savings	-							
Technology	•Environmental	_							
Introduction	benefits	Increase in Fe &	allov vield, and productivity						
•Co-benefits		Increase in Fe & alloy yield, and productivity Improve steel quality							
4. Japanese Main Supplier			, Daido Steel, Nikko	1.51 1					
5. Technologic 5. Comments		<preconditions or<br="">- Values of "Elec EPA-BACT (S</preconditions>	. 2014), Diagram from JP Stee n calculating effects and inves tricity saving" are based on the ep. 2014) & equipment suppli t include such other advantage	tment costs> e er's rough estimation					
			11						

Ultra high-power transformer for EAF

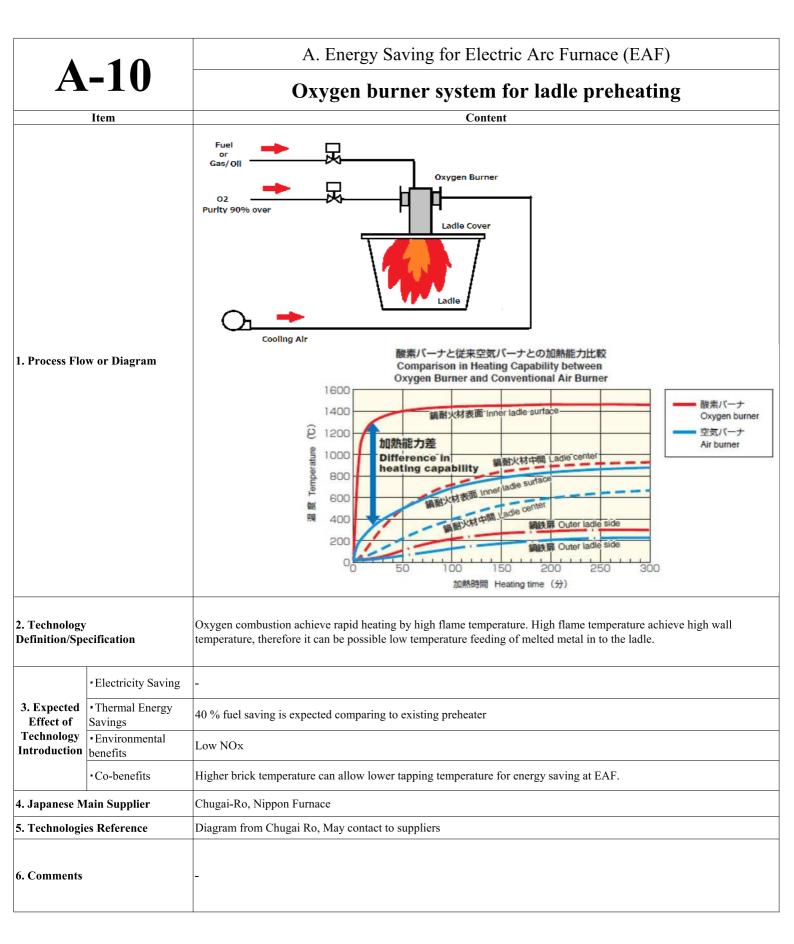
Content

	Item	Content
1. Process Flow or Diagram		 Forced-Oil Forced-Water Cooling type (OFWF)/法加水冷式. Water-cooled oil cooler + oil pump 水冷クーラー+送油ボンプ Single tube or double tube cooler 一団首 の「二団首クーラー
		FINE-GRAINED VOLTAGE CONTROL HIGH-EFFICIENCY FURNACE TRANSFORMER HIGH-EFFICIENCY FURNACE TRANSFORMER HIGH-EFFICIENCY HIGH-EFFICIENCY HIGH-EFFICIENCY HIGH
2. Technology Definition/Specification		In the conventional system, series reactor was used for the early melting stage in order to stabilize arc and control of a flicker . Since High-Efficiency Furnace Transformer provides high impedance at early melting stage, series reactor is not required, though the same performance is achieved. - Reduce electric power consumption - Reduce electrode consumption - Shorten tap to tap time 'In addition, it will conduct a fine-grained control by adding a reactor.
	•Electricity Saving	15 kWh/ton-product
	• Thermal Energy Savings	-
Technology Introduction	•Environmental benefits	-
•Co-benefits		Increase productivity
4. Japanese Main Supplier		Fuji Electric, JP Steel Plantech, Daido, Nikko
5. Technologies Reference		EPA-BACT ("Transformer efficiency - ultra-high power transformers"), Diagram from Nikko <preconditions calculating="" effects="" on=""> "Electricity serving" 15 kWh/ton product somes from EBA BACT</preconditions>
6. Comments		<preconditions calculating="" effects="" on=""> - "Electricity saving" 15 kWh/ton-product comes from EPA-BACT, assuming that 44 MVA transformer for 80 ton EAF is revamped to 55 MVA.</preconditions>

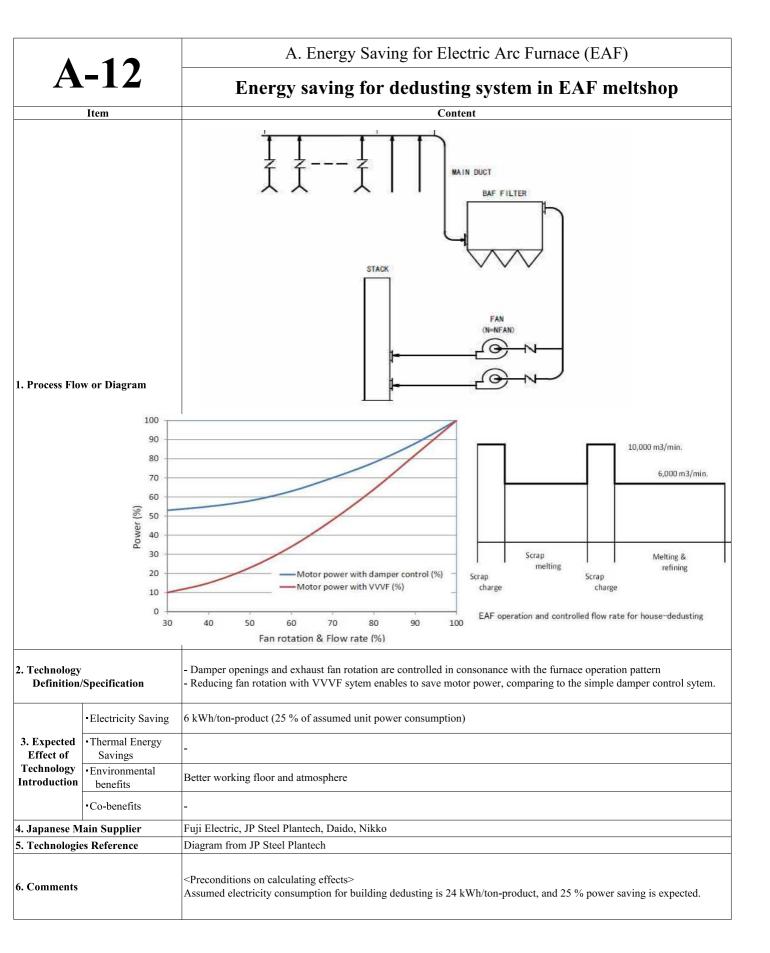
		A. Energy Saving f	for Electric Arc Furnace (EAF)				
P	1-0	Optimizing slag foaming in EAF					
	Item	Content					
1. Process Flow or Diagram		ho ho ho ho ho ho bo ho ho bo ho ho bo h	Improved slag foaming Interent burner backside Conjection Comy Slag Arc shrouded in "foamy slag"				
		Heat loss → Large	Heat loss \rightarrow Minimized				
2. Technology Definition/Spo		 Proper chemical ingredients of slag (Basicity 1.5 - High efficient burner and/or lance Controlled O2 & C injection into EAF proper posi Keeping slag thickness with air-tight operation 					
	Electricity Saving	6 kWh/ton-product					
3. Expected Effect of	• Thermal Energy Savings	-					
Technology Introduction	• Environmental benefits	Noise reduction & working floor cleaning					
•Co-benefits		-					
4. Japanese Main Supplier		JP Steel Plantech, Daido Steel, Nikko					
5. Technologies Reference SOACT 2nd Edition (Delete the word "Exchangeable Furnace and Injection Technology"), Diagram from Plantech		le Furnace and Injection Technology"), Diagram from JP Steel					
6. Comments		<source "electricity="" of="" saving"=""/> (1) 2.5 - 3 % energy saving in SOACT> 430 (2) The phenomenum is explained by several fac					

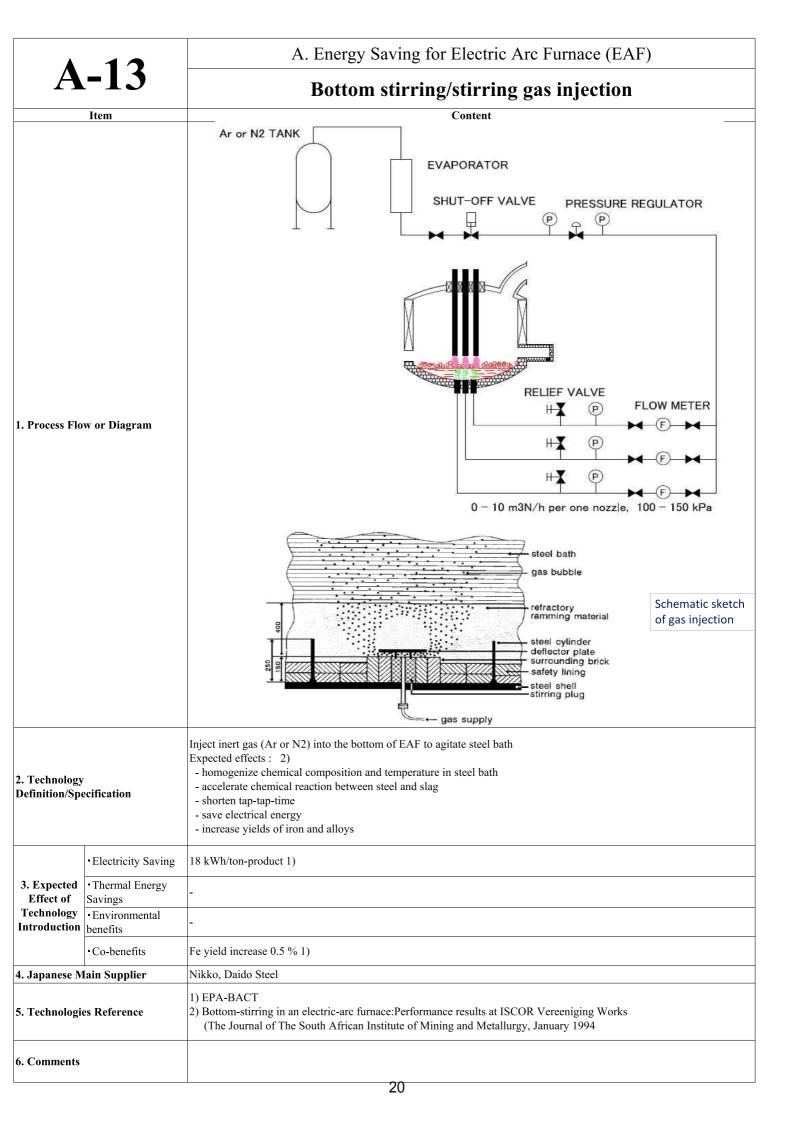


A. Energy Saving for Electric Arc Furnace (EAF)


Operation support system with EAF meltdown judgment

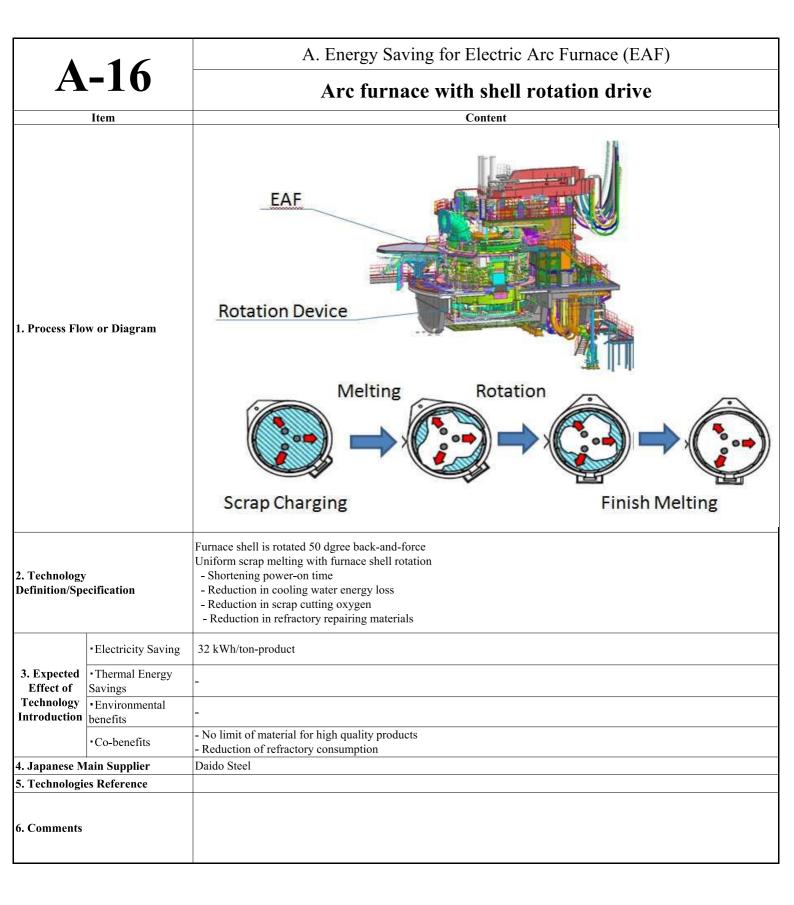
Item


Content



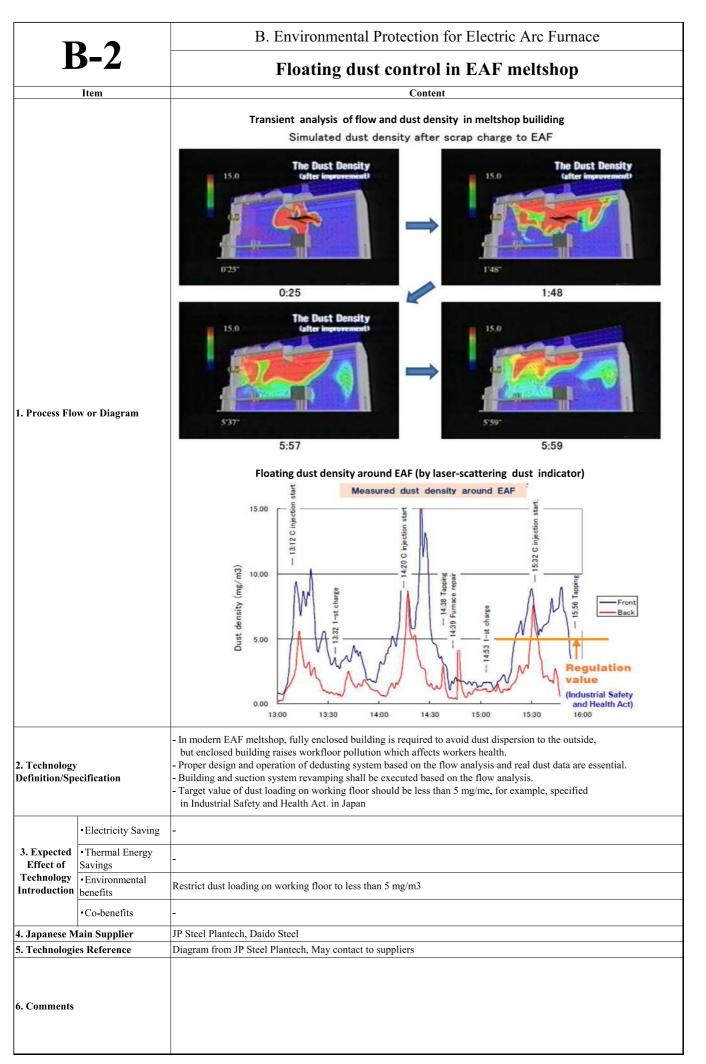
		A. Energy Saving for Electric Arc Furnace (EAF)
P	1-9	Low NOx regenerative burner system for ladle preheating
	Item	Content
Item 1. Process Flow or Diagram		Exhaust gas suction fun Cycle Valve Combustion air blower Combustion air blower Combusti
2. Technology Definition/Specification		While one of the burners is burning, the other burner will work as an exhaust outlet. The exhaust gas is discharged from the system after the waste heat of the gas is recovered so that the temperature of the gas will be lowered to the extent that there will be no condensation in the regenerator. The combustion air receives heat from the regenerator. Therefore, the combustion air will be preheated to a super-high temperature (i.e., 90% of the temperature of the exhaust gas or over) before the combustion air is supplied to the burner. When the preset cycle time elapses, the burners exchange their roles of combustion and exhaustion.
	•Electricity Saving	-
3. Expected Effect of Technology Introduction	•Thermal Energy Savings	40 % fuel saving is expected comparing to existing preheater with conventional burner. 900 m3N natural gas in 6 hour burning for 80 ton ladle consumes about 40 GJ> 0.5 GJ/ton-steel x 40 % = 0.2 GJ/ton- steel save
	•Environmental benefits	Low NOx
	•Co-benefits	Higher brick temperature can allow lower tapping temperature for energy saving at EAF. Improving meltshop atmosphere by reducing hot gas which disturbs dirty gas suction at the canopy
4. Japanese M	ain Supplier	Chugai-Ro, Nippon Furnace
5. Technologi	es Reference	
6. Comments		-

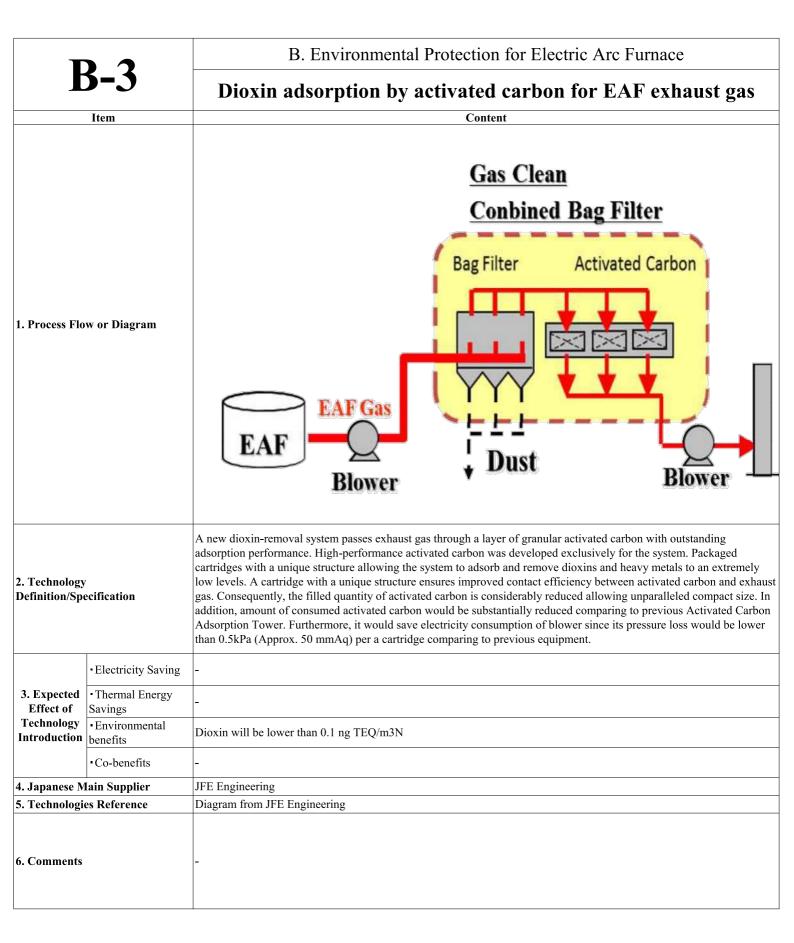
	11	A. Energy Saving for Electric Arc Furnace (EAF)					
	-11	Waste heat recovery from EAF					
	Item	Content					
		To application					
1. Process Flow or Diagram		Steam drum Accumulator From application system Cooling water circulation pump					
2. Technology Definition/Spe		 Waste heat boiler based on the OG boiler technology Specified for splash and dust containing Main boiler is radiative type, and convective type super heater is located at the downstream of boiler to avoid clogging. 					
	•Electricity Saving	132 kWh/ton-product					
	Thermal Energy Savings	-					
Technology Introduction	• Environmental benefits	-					
	• Co-benefits	-					
4. Japanese Main Supplier		JP Steel Plantech (yoshidah@steelplantech.co.jp, tel +81-45-471-3917 fax +81-45-471-4002)					
5. Technologies Reference 6. Comments		Diagram from JP Steel Plantech, May contact to JP Steel Plantech					
		<preconditions calculating="" effects="" on=""> - Power generation is 248,000 MWh/year with two 150 ton EAFs for DRI - Assumed annual production by two 150 ton EAF = 500,000 / 80 x 150 x 2 = 1,875,000 ton/y - Unit power generation = 248,000 x 1,000 / 1,875,000 = 132 kWh/ton-product - Suited to DRI continuous charging EAF, not scrap EAF</preconditions>					

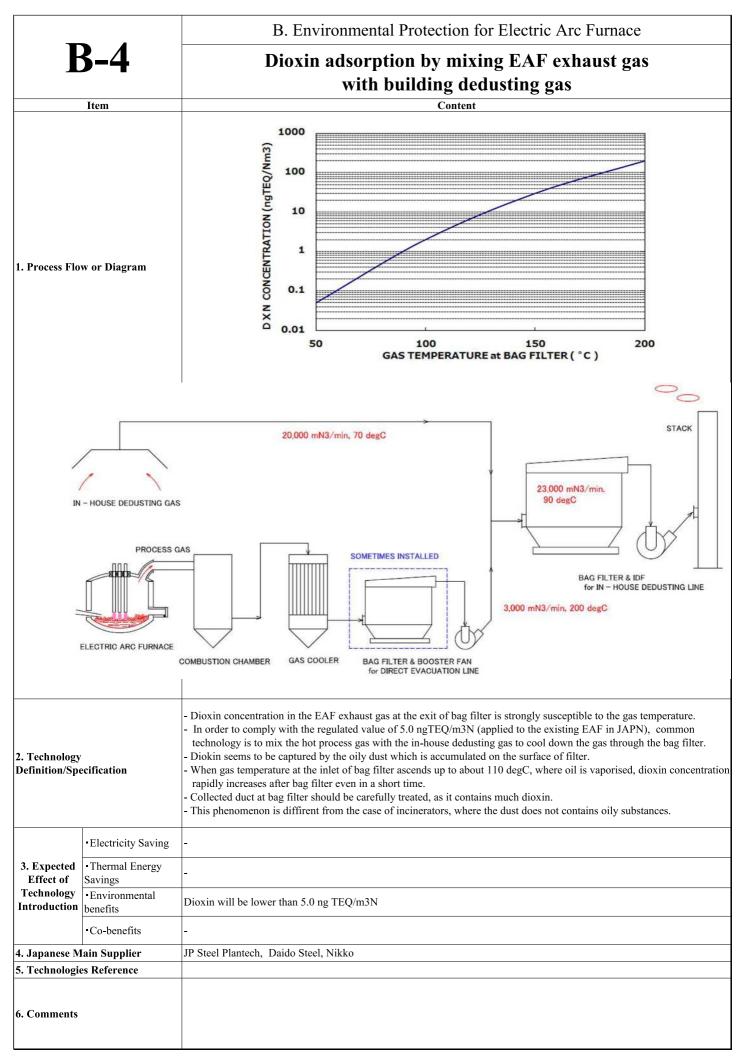


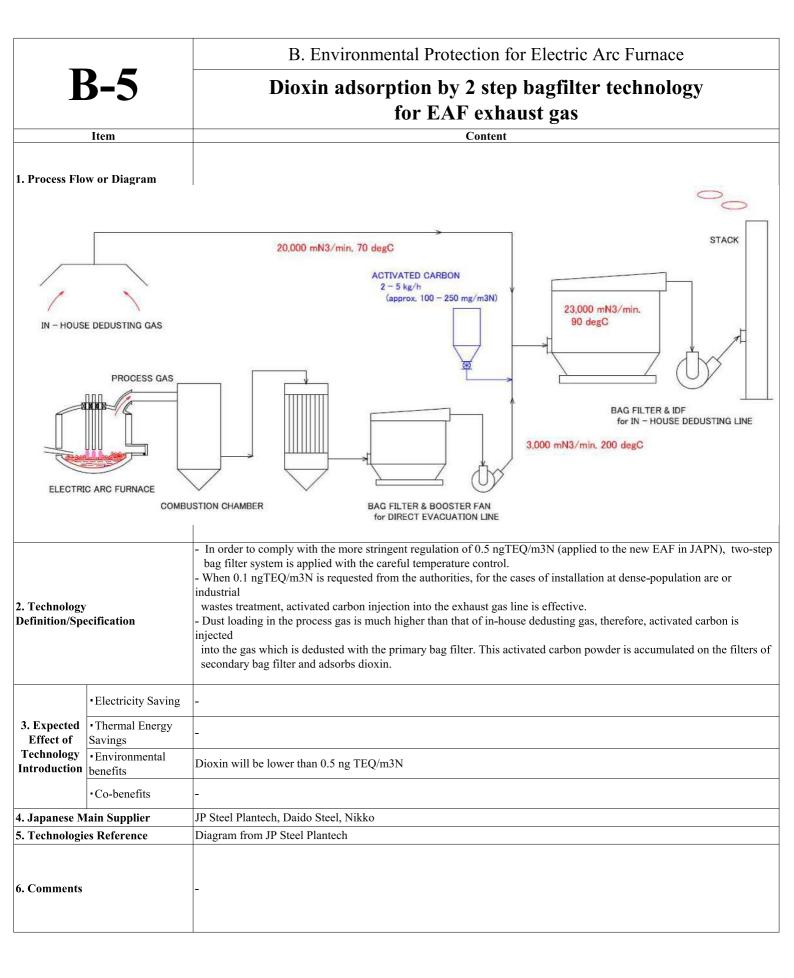
A 1 /		A. Energy Saving for Electric Arc Furnace (EAF)					
	-14	Induction type tundish heater					
Item		Content					
Item							
		(Secondary conductor) Secondary current					
2. Technology Definition/Spo		<features for="" heater="" induction="" tundish=""> 1.Uniformity of Element of Molten Steel:Agitation effect by electromagnetic force. 2.High Precision Temperature Control:Target Temp.±2.5degree. 3.High Heating Effciency: More than 90% by channel type inductor. 4.Ease of maintennance:Water cooled feeder with quick connector.Self-cooled type Induction coil and so on.</features>					
	Electricity Saving	3 kWh / ton-product (Effect is calculated comparing to electricity consumption of plasma type heater)					
3. Expected Effect of Technology	Thermal Energy Savings Environmental	-					
Introduction	benefits						
•Co-benefits		1.Productivity increase 2.Quality improvement					
4. Japanese M		Fuji Electric					
5. Technologies Reference 6. Comments		Fuji Electric					
		<preconditions calculating="" effects="" on=""> Assumed plasma type tundish heater is installed Ladle capacity: 200 ton Operated days: 30 days/month Electricity intensity of heater: 13.7 kWh/ton Heat efficiency: 70% Pouring amount: 2.5 ton/min Dissolution time: 80 min/charge Rised temperature: 40 degeree C Number of charges: 8 charges/day Monthly production: 48,000 ton Annual production: 576, 000 ton </preconditions>					

Scrap pretreatment with scrap shear


Item		Content	
1. Process Flow or Diagram			
		Before scrap pretreatment (0.3 ton/m3)	After scrap pretreatment (0.6
2. Technology Definition/Spo		 Long size or low bulk-density scrap is shredded and packed. For example, bulk density of 0.3 m3/ton can be decreased to 0.6 with Scrap pretreatment decreases the scrap-charging frequency, which wi 	
	• Electricity Saving	20 kWh/ton-product (reported by Non-integrated steel producer's asso	ciation of Japan)
3. Expected Effect of		-	
Technology Introduction	Savings •Environmental benefits	-	
	•Co-benefits	- Fe yield increase in 1.5 %, TTT shortening	
4. Japanese Main Supplier		Fuji Car Manufacturing	
5. Technologie	es Reference		
6. Comments			

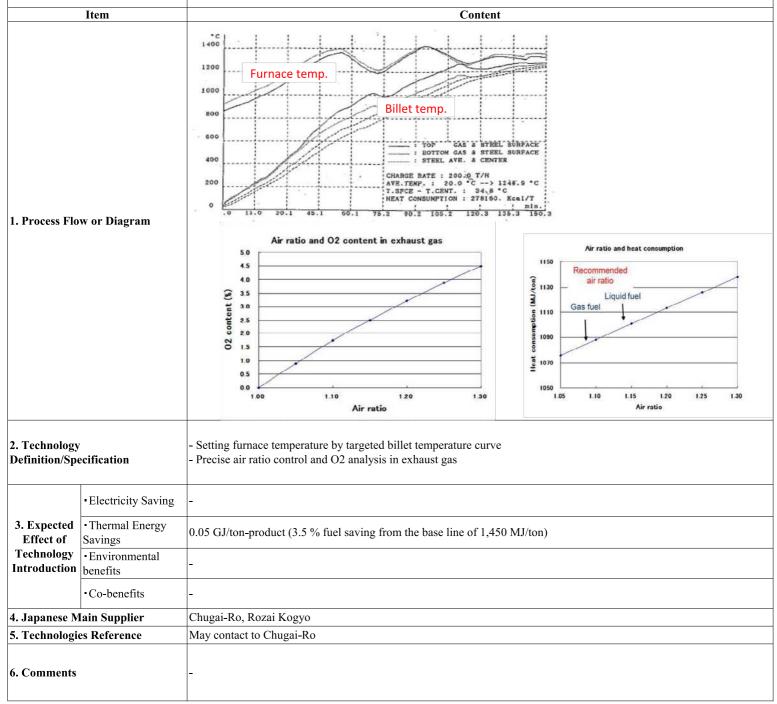


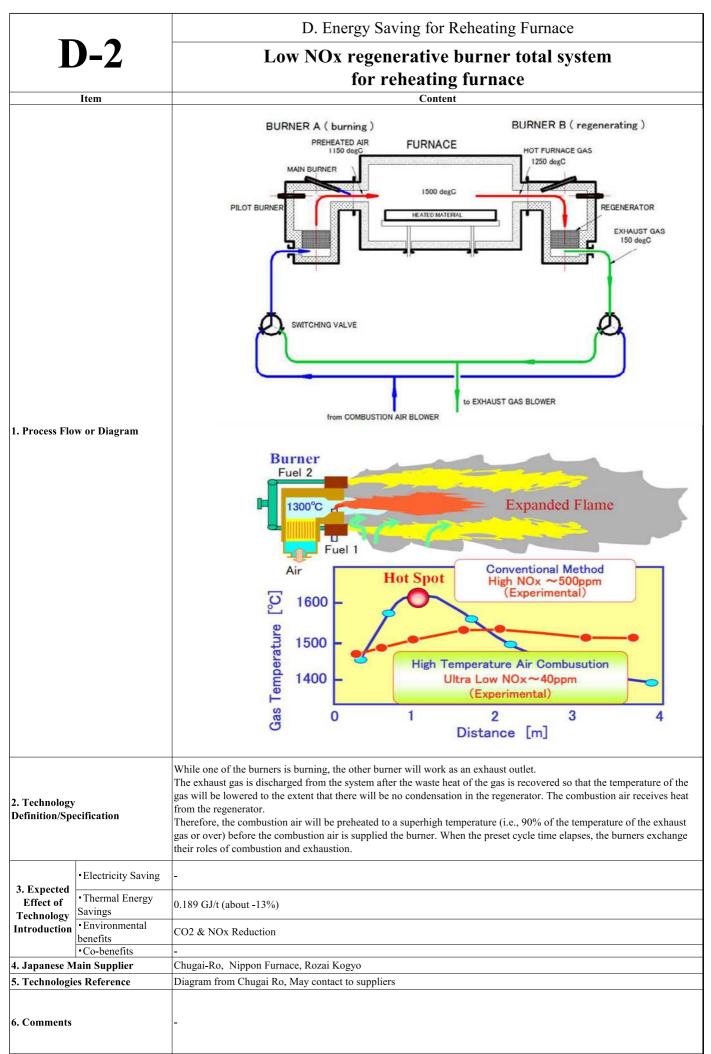



Exhaust gas treatment through gas cooling, carbon injection, and bag filter dedusting for EAF

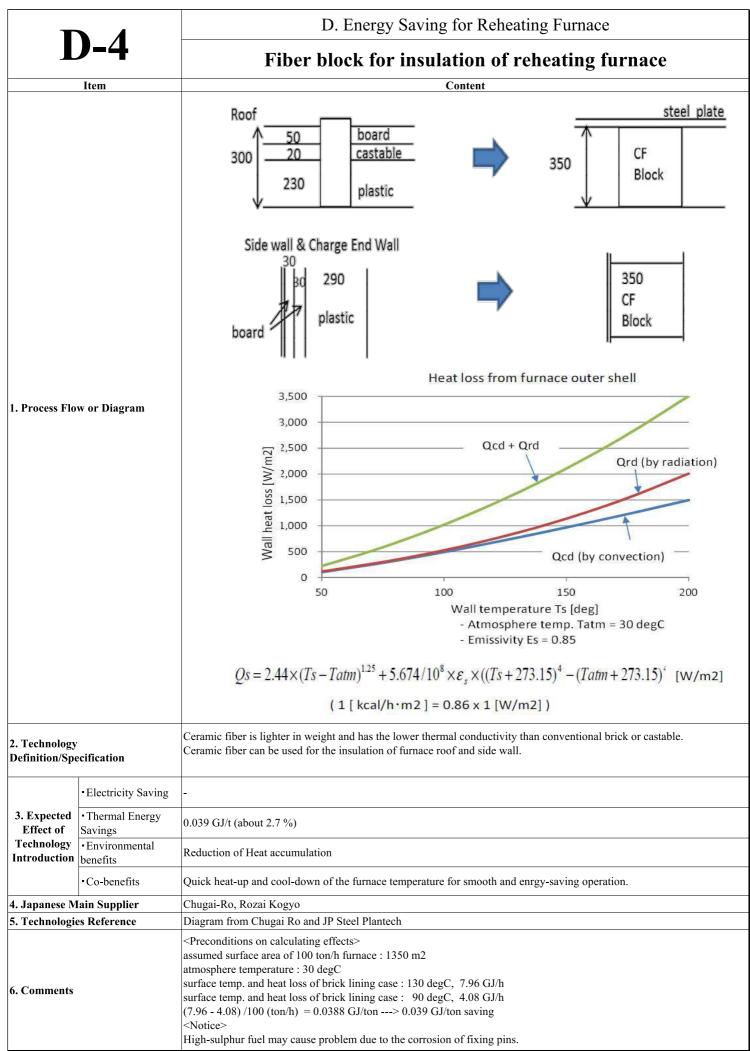
		injection, and bag inter dedusting for EAT
	Item	Content
1. Process Flow or Diagram		
2. Technology Definition/Spo	ecification	 Improved design configuration of the direct evacuation for treating hot unburned gas from much fuel use Minimize dust and gas dispersion from EAF with enough capacity and suitable control Much fossil fuel use becomes possible to save electricity.
3. Expected Effect of Technology	•Electricity Saving	 When capacity increase is applied to the standard size EAF (30 m3N-O2/ton-steel, 20 m3N-natural gas/ton-steel, and 15 kg-carbon/ton-steel), expected electrical energy saving becomes as: 4 - 5 kWh/m3N-O2 8 - 9 kWh/m3N-natural gas 8 - 9 kWh/kg-carbon Decrease in yield is assumed as 1 - 2 % per 10 m3N-O2/ton-steel.
Introduction	Savings	-
	• Environmental benefits	Better workfloor environment
	•Co-benefits	-
4. Japanese Main Supplier		JP Steel Plantech, Daido Steel, Nikko
5. Technologies Reference		SOACT 2nd Edition Recent Progress of Steelmaking Technologiy in Electric Arc Furnace (1993, JISF)
6. Comments		

B-6		B. Environmental Protection for Electric Arc Furnace			
		PKS charcoal use for EAF			
Item		Content			
Item		Coke: coarse size particle			
2. Technology Definition/Specification		 Charcoal made from PKS (Palm Kernel Shell) has similar quality with coke commonly used for carbon injection into EAF Higher heating value, lower sulfur content than fossil fuel coke CO2 generated from charcoal is not counted as GHG (Green House Gas) PKS charcoal is produced for the production of activated carbon in a small scale Equipmet is very simple and can be constructed by local technology Japanese supplier will provide with know-how 			
	Electricity Saving	-			
3. Expected Effect of Technology Introduction	Thermal Energy Savings	-			
	•Environmental benefits	39,000 ton-CO2/y GHG reduction from 500,000 ton/y EAF plant			
	•Co-benefits	-			
4. Japanese Main Supplier		JP Steel Plantech			
5. Technologies Reference					
6. Comments		<preconditions calculating="" effects="" on=""> Replaced coke at EAF : 25 kg/ton-steel C content in coke : 85 % CO2 generation from coke = 0.85 x 44 / 12 = 3.12 ton-CO2/ton-coke GHG reduction = 500,000 ton-steel/y x 0.025 x 3.12 = 39,000 ton-CO2/y</preconditions>			


C-1		C. Material Recycle for Electric Arc Furnace								
		EAF dust and slag recycling system by oxygen-fuel burner								
Item					Content					
1. Process Flow or Diagram		RECOVER AND RECEIPTION OF A DESCRIPTION OF A DESCRIPTIONO	Fec Co	A REAL PROPERTY AND INCOME.	RiziX公: High-Temp Flame の 日 日 別注於方ス(No) Bubbling Cos(No)	緊盤村 Read a	Cooling Tower	コレフター Collectee 単記条符号 Zince Row Materials Time Row Materials Time Row Materials Zince Row Materials	E)	
2. Technology Definition/Specification		As dust and slag are melted down completely at high temperature, it is very effective against dioxin. Produced valuable substances are completely harmless and can meet all environmental standards. More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism. Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatments. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing. Also this system can recover expected 95% Zn from EAF dust as Zn law material.								
	 Electricity Saving 	_								
	Thermal Energy									
	Savings	-								
3. Expected Effect of	•Environmental benefits	Example of the Le	eaching test 1	result of Agg			y ME, Japa	.n)		
Technology		mg/l	Pb	Cd	Cr ⁺⁶		s I	Ig	Se	
Introduction		Aggregate	< 0.006	< 0.001	< 0.00			0005	< 0.004	
		Regulation	0.01	0.01	0.05	0.0	0.0	0005	0.01	
	•Co-benefits	Zn material can be gained from EAF dust								
4. Japanese Main Supplier		Heavy aggregate can be Daido Steel	gained from EA	AF dust						
4. Japanese M 5. Technologie		Diagram from Daido Ste	el. May contact	t to Daido Steel						
		Example of the che (wt%)	T-Fe	CaO		7	Dh	Cl	E	
		Zn raw material	6.5	2.5	SiO ₂ 0.9	Zn 52.3	Pb 8.5	Cl 7.7	F 1.4	
6. Comments		Aggregate	40.1	17.8	10.2	2.1	<0.01	0.4	0.3	
		-								
		Expected consump	1 1							
		Heavy Oil 160.0 L/t-EAF Dust				4				
		Oxygen390.0m3N/t-EAF DustWaste Plastic96.0kg/t-EAF Dust								
		Waste Plastic	0.08	kg/t-EAF Du	ist					


		C. Material Recycle for Electric Arc Furnace					
C-2		EAF slag agglomeration for aggregate use					
Item		Content					
1. Process Flow or Diagram		Appearance of granulated slag Granulated slag (SEM image) Granulated slag (SEM image) Freatment Process for Electric Arc Furnace Slag Air					
2. Technology Definition/Specification		Molten slag is rapidly cooled by jet air, and becomes 0.3-5mm size of spherical structure, -Create strong & heavy fine aggregate material for concrete -Enviromental friendly material -Suitable & meet with JIS A 5011-4 for Electric arc furnace oxidizing slag aggregate. -Require smaller space than normal slag treatment area.					
	•Electricity Saving	Electricity consumption : 6 - 8 kWh/ton-slag					
3. Expected Effect of Technology Introduction	• Thermal Energy Savings	-					
	•Environmental benefits	-					
	•Co-benefits	Reduce disposal cost of industrial waste Processing time for one heat of EAF : 10 minutes					
4. Japanese Main Supplier		Nikko					
5. Technologies Reference		Diagram from Nikko					
6. Comments		<notice> When using this technology, slag analysis data should be confirmed to meet the environmental regulation <preconditions calculating="" effects="" on=""> - Slag generation : 80 kg/ton-product - Yield of granulated slag with this process : 60-70 %</preconditions></notice>					

D-1


D. Energy Saving for Reheating Furnace

D-3		D. Energy Saving for Reheating Furnace					
		High temperature recuperator for reheating furnace					
	Item	Content					
		20°C 300°C 20°C Waste gas Waste gas					
1. Process Flow or Diagram		Preheated air temperature and heat consumption 1,400 1,300 1,200 1,000 900 1,000 900 1,000 900 1,000 900 1,000 900 1,000 900 1,000 900 Heat consumption Heat consumption Heating temperature : 1,100 degC 500 400 900 1,000 1,					
2. Technology Definition/Specification		Heat transfer area of the existing recuperator shall be increased (for example, by changing two-pass to four-pass) in orde to raise the preheated combustion air temperature. For this purpose, the followings may or may not be needed. - Modification of Recuperator room - Change of air duct - Increase in discharge pressure of blower - High grade recuperator material					
3. Expected Effect of Technology Introduction	Electricity Saving	-					
	• Thermal Energy Savings	0.100 GJ/t (about -7%)					
	• Environmental benefits	CO2 Reduction					
	•Co-benefits	-					
4. Japanese Main Supplier		Chugai-Ro, Rozai Kogyo					
5. Technologies Reference		Diagram from Chugai Ro					
6. Comments		<preconditions calculating="" effects="" on=""> When 300 degC air temperature is raised to 500 degC, 7 % enrgy saving is expected.</preconditions>					

Г	16	D. Energy Saving for Reheating Furnace						
L)-6	Induction type billet heater for direct rolling						
	Item	Content						
		Induction coil	Hot billet					
		<u>Heating Curve</u>						
1. Process Flo	w or Diagram							
		1300 1200 1100 1000 900 800 700 0 5 10 15 Time(s)	20	- Center of Side - Corner - Center 25				
2. Technology Definition	Specification	Compensate temperature drop of billets transferred from CC to rolling mill (from 9 Advantages : - Automatic control - Less exhaust gas (without reheating furnace)	950 degC to 1050 deg	;C).				
	Electricity Saving	40 kWh/ton-product increase (electrical energy for billet heating)						
3. Expected Effect of	Thermal Energy Savings	1.45 GJ/ton-product (Cold charge to reheating furnace is replaced.)						
Technology Introduction	 Environmental benefits 	Better working floor and atmosphere						
	•Co-benefits	-						
4. Japanese M		Mitsui E&S Power Systems Inc.						
5. Technologie	es Reference	-						
6. Comments								

Г) 7			D.	. Energy	Sav	ving for Re	ehea	ting Fu	rnac	e		
L)-7			Oxy	gen en	rich	ment for	r co	mbusi	iotn	air		
	Item						Content						
1. Process Flov	w or Diagram	When oxygen is mixed into combusiotn air to increase the O2 percentage, thermal energy will be reduced with th volume of exhaust gas. In many EAF plants, oxygen is generated by PSA or VPSA process, therfore, new equipn generation is not considered in this sheet. Only the electric power to generate oxygen is studied to estimate its eco						new equipment	for oxy	/gen			
2. Technology Definition/	/Specification	Effects of oxygen enrichment are studied for the model RHF of 100 ton/h 1,100 degC billet heating (500,000 ton/y). The upper list shows the required fuel (thermal energy) and volume of oxygen. When oxygen percentage id raised to 42 %, exhaust gas volume from the furnace reduces to 45 % with 19.5 % fuel saving. The list also shows the required oxygen volume. The oxygen is assumed to be generated by VPSA process, with the purity of 93 %. The bottom list shows the economical effect of oxygen enrichment. Required electric power is assumed as 0.5 kWh/m3N-O2 of 0.1 MPa pressure. Energy price is based on the latest Japanese values of 17.11 US\$/GJ and 0.123 US\$/kWh.											
			O2 in	Unit heat	Rate		Fuel gas		xygen		is flow rate		ower to
			com. ai	r cons. 1,330 MJ/te	on 100.0	0/	flow rate 3,930 m3N/h	flo	ow rate 0 m3N/h		n furnace 890 m3N/h	-	duce O2 0 kWh/to
			21 %	1.330 MJ/to			3,930 m3N/h	1.6	0 m3N/n 13 m3N/h	1-201211	720 m3N/h		1 kWh/to
		-	626 - 145	1,230 MJ/to	-		3,483 m3N/h		85 m3N/h	2000	440 m3N/h		9 kWh/to
			27 %					0.000000		9-3 (Mil		0.000	STEAD CONTRACTS
		-	30 %	1,140 MJ/t		_	3,363 m3N/h		00 m3N/h		480 m3N/h		5 kWh/to
			33 %	1,120 MJ/t	1 252.21		3,298 m3N/h		83 m3N/h		660 m3N/h		4 kWh/to
			36 %	1,100 MJ/te	and the second sec		3,236 m3N/h		38 m3N/h		320 m3N/h		7 kWh/to
			39 %	1,080 MJ/to		_	3,190 m3N/h		15 m3N/h		430 m3N/h		6 kWh/to
		l	42 %	1,070 MJ/to	on 80.5	0 %	3,150 m3N/h	5,02	29 m3N/h	21,	850 m3N/h	25.	1 kWh/to
		1	O2 in	Required		2.00	Power to		Electricity	cost	Sum of		Rate of
			com. air	thermal energy	Fuel co	st	produce O2	2	produce	02	energy ci	st	cost
			21 %	665,000 GJ/y	11.38 mill.	US\$/y	0 MW	/h/y	0 mill.	US\$/y	11.38 mill. U	JS\$/y	100.0 %
			24 %	615,000 GJ/y	10.52 mill.	US\$/y	4,050 MW	/h/y	0.50 mill.	US\$/y	11.02 mill. U	JS\$/y	96.8 %
			27 %	591,000 GJ/y	10.11 mill.	US\$/y	6,465 MW	/h/y	0.79 mill.	- 288,	10.90 mill. U	JS\$/y	95.8 %
			30 %	570,000 GJ/y	9.75 mill.	US\$/y	8,250 MW	/h/y	1.01 mill.	US\$/y	10.76 mill. l	JS\$/y	94.6 %
			33 %	560,000 GJ/y		US\$/y	9,710 MW	/h/y	1.19 mill.	US\$/y	10.77 mill. l	JS\$/y	94.6 %
			36 %	550,000 GJ/y					1.33 mill.		10.74 mill. l		94.3 %
			39 %	540,000 GJ/y	9.24 mill.		State of State of State of State		1.45 mill.	10	10.69 mill. l		93.9 %
			42 %	535,000 GJ/y	9.15 mill.	US\$/y	12,550 MW	/h/y	1.54 mill.	US\$/y	10.69 mill. l	JS\$/y	93.9 %
	Electricity Saving	Wher	n oxxygen j	percentage is rais	ed to 39 %, 2	23.6 k	Wh/ton of electr	icity i	s needed.				
3. Expected Effect of	Thermal Energy Savings	Wher	n oxxygen j	percentage is rais	ed to 39 %,	0.26 G	J/ton of thermal	energ	gy is saved.				
Technology Introduction	•Environmental benefits												
	•Co-benefits												
4. Japanese M	ain Supplier	Chug	ai-Ro, Roz	ai Kogyo, Nippo	n furnace								
5. Technologie	es Reference												
6. Comments		Furna	ace manufa	ctureres can arrai	nge the oxyg	en con	trol system and	piping	g revamping	<u>z</u> .			

	1	E. Common systems and General Energy Savings				
E -1		Inverter (VVVF; Variable Voltage Valuable Frequency) Drive for Motors				
Item		Content				
at point "b" after - Power for pumps i and motor input rat Fig.1	at point " a" in the curren adoption of an inverter sys s proportional to " flow rate to before and after installa Relationship between f re/after adoption of an in	e × total pressure", tion is the ratio of Q0 × P1 and Q0 × P0. flow rate and total pressure 10 P27. February 2001 0 Fig. 2 Relationship between airflow and required electric power relating to the type of control *2				
2 Investment Cost & Onever	ing Life	* Reduction in power consumption by lowering motor speed : 15% (assumed)				
3. Investment Cost & Operat	•Reduction of CO2	¥2,000,000/unit(assumed) [NEDO] Not announced				
4. Effect of Technology Introduction	Emission •Electricity Savings	125,000 kWh/y [=55kW/unit x 0.7(assumed aveerage motor power) x 6units x 3600h/y x 0.15]				
	•Economic Effect (payback time)	1.5 years [NEDO]				
5. Direct Effect (Annual Operating Cost)	Productivity Improvement	Not announced				
6 Individe Effect	Maintenance Cost Reduction Product Quality	Not announced				
6. Indirect Effect (Co-benefits)	Product Quality Improvement	Not announced				
7. Diffusion Rate of Technolo	gy in Japan	No data				
8. Japanese Main Supplier		Fuji Electric				
9. Technologies Reference:		 *1 Guidebook on Energy Conservation for Factories (2010/2011), ed. by The Energy Conservation Center, Japan *2 Energy savings Diagnosis Examples-Common Equipment Volume', Energy conservation Center, Japan 				
10. Preconditions		 * Payback time is defined as (Investment cost / Economical merit) in this project. * annual operation : 3,600 h/y, * unit cost of power : ¥15/kWh 				

E-2		E. Common systems and General Energy Savings						
		Energy monitoring and management systems						
		Content						
1. Process Flow or Diagram		Online monito	Daily and reports o bala oring and loggin	f energy nce	nergy currents			
		Electric Power	Steam	Fuel	Oxygen			
2. Technology Definition/Specification		This measure includes site energy man - Online monitoring: This is often used so that typical situations may be analyz It is the main technique used to avoid - Continuous monitoring systems: Sinc enable instant maintenance, undisrup - Reporting and analyzing tools: Repor In connection with cost controlling, c An energy controlling system enables	I for the most important energy zed. It is very important to n energy losses. The all energy-related process of production process coul rting tools are often used to controlling energy is the basi	rgy flows at the site. The data nonitor for all energy source parameters are used to opti Id be achieved. check the average energy co is for optimizing energy co	ata are stored for a long time ses on online. timize process control and to consumption of each process. nsumption and cost savings.			
3. Expected Effect of Technology Introduction	Electricity Saving Thermal Energy Savings Environmental Benefits	- Energy saving effect depends on the local conditions, therefore, quantitative estimation is difficult						
	•Co-benefits	-						
4. Japanese M	Lain Supplier	Fuji Electric						
5. Technologie	es Reference							
6. Comments								

		E. Common systems and General Energy Savings						
ŀ	Z-3	Management of compressed air delivery pressure						
		optimization						
	Item	Content						
1. Process Flow or Diagram		$ \begin{array}{c} 100\\ 90\\ 90\\ 80\\ 70\\ 60\\ 40\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 0\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 0\\ 1\\ 6\\ 7\\ 0\\ 1\\ 6\\ 7\\ 0\\ 1\\ 6\\ 7\\ 0\\ 1\\ 6\\ 7\\ 0\\ 1\\ 6\\ 7\\ 0\\ 1\\ 6\\ 7\\ 0\\ 1\\ 6\\ 7\\ 0\\ 1\\ 6\\ 7\\ 0\\ 1\\ 6\\ 7\\ 0\\ 1\\ 6\\ 7\\ 0\\ 1\\ 6\\ 7\\ 0\\ 1\\ 6\\ 7\\ 0\\ 1\\ 6\\ 7\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$						
2. Technology Definition/	'Specification	Energy saving in compressors requires consideration of the following points. * Selection of the appropriate capacity * Reduction in delivery pressure by keeping the required working power Since the required motive power increases with increased delivery pressure, appropreate delivery pressure should be selected in consideration of the items below. * Prevention of leakage * Reduction in temperature of the compressed air * Reduction in intake air resistance Intake air resistance increases with intake filters, silencers, and valves in piping etc, and will increase the required motive power if excessive. Care is required to reduce pressure losses in the intake air system through periodic cleaning of filters to eliminate clogging. * Reduction in piping resistance From the figure above, when delivery pressure is reduced to 0.098MPa, load on the electric motor can be reduced by approximately 10 %. When low pressure air is sufficient, low pressure unit should be additionally adopted instead of pressure reducing valves.						
	• Electricity Saving	285 MWh/y (=823 kW x 60 % x 10 % x 24 h/d x 241 days/y)						
3. Expected Effect of	Thermal Energy Savings	-						
Technology Introduction	 Environmental benefits 	-						
	• Co-benefits	-						
. Japanese M	lain Supplier	Major electric equipment suppliers						
. Technologie	es Reference	Japanese Technologies for Energy Savings/GHG Emissions Reduction (2008 Revised Edition), editted by NEDO						
5. Comments		Preconditions for trail calculating above>- Number of compressors; Total of 17, - Equipment capacity; 823 kW, - Daily operation; 24 h/d,*Delivery pressure; 0.8 MPa, *On-load operation load; 60 %, *Annual operation; 241 days'						

F	Z-4	E. Common systems and General Energy Savings Highly efficient combustion system for radiant tube burner				
	Item	Content Content Content Content Content Content Content Silicon				
1. Process Flow		Silicon-Carbide Inserts for heat radiation Radiant Tube Radiant Tube Combustion air flow on the silicon-carbide heat exchanger				
2. Technology De	finition/Specification	Radiant tube burner which consists of 1)Radiant tube(U shape or W shape), 2)Gas Burner, 3)3-D formed silicon-carbide Inserts for heat radiation, and 4)Heat exchanger made of 3-D formed silicon carbide. These 3-D formed silicon carbide elements have high thermal conductivity and wide surface area, which allow approx. 10% improvement in heat recovery compared to conventional radiant tube burners with heat exchanger made of steel. Any industrial furnace with radiant tube burner will potentially be applicable and typical applicable furnace will be CGL, Continuous Galvalizing Line or CAL, Continuous Annealing Line, with approx. 100-200 radiant tube burners of 210- 420MJ/hour of rated combustion volume. *Radiant tube burner is often used for the industrial furnaces such as heat treatment furnace which requires indirect heating.				
3. Investment Co & Operating		The cost of adding this system into existing furnace will be approximately 1.6 million JPY for one burner which have 420MJ/hour of combustion rate. This includes the cost for installation work and combustion adjustments. Operating life for silicon carbide elements is considered to be semipermanently.				
4. Effect of Technology Introduction	• Reduction of CO2 Emission	2,654t-CO2/year under assumptions below. 1) 10% of Fuel substitution will be achieved by replacing conventional recupecator into DINCS (Daido Innovative Neo Combustion System) to the CGL with 200 radiant tube burners. 2) Each burners have 420MJ/h of rated combustion volume, and combusted at 80% rate on average. 3) Furnace operation is 330days/year, 24 hours/day. Production capacity is assumed as 594,000 ton/y (75 ton/h x 24h x 330 day/y) 4) The effect is calculated as comparison with steel heat exchanger system 5) Natural gas is used as for combustion. $53222(GJ/year) \times 0.0136(tC/GJ) \times \frac{44}{12} = 2,654(tCO2/year)$				
	• Fuel Savings	53,222GJ/year under assumptions same as above 0.0896 GJ/ton saving (= 53,222 GJ/y / 594,000 ton-product/y)				
	Electricity Savings	N/A				
5. Direct Effect (Annual	• Economic Effect (payback time)	Approx. 4.9 years under assumptions same as above. Cost for installation work and combustion adjustment are included (1,600,000JPY) and the price of thermal enrgy is assumed to be 19.11 US\$/GJ (2,100 JPY/GJ). Annual profit = 53,222 GJ/y x 19.11 US\$/GJ / 594,000 ton/y = 1.71 US\$/ton-product <calcuation> Payback time = (1,600,000 JPY x 200 units) / (53,222 GJ/y x 2,100 JPY/GJ) = 2.86 year</calcuation>				
Operating Cost)	• Productivity Improvement	Since this system transfers the heat effectivly into the furnace or into product, line speed of the furnacecan be increased which results in productivity improvement, if there is no restrictions for the equpment other than the combustion system.				
	Maintenance Cost Reduction	Conventional heat exchanger made of steel usually requires replacement every 3-4 years, but silicon carbide elements will not deteriorate over time and last semipermanently.				
6. Indirect Effect	Product Quality Improvement	N/A				
(Co-benefits)	• SOx, Dust Decrease	N/A				
7. Proficiency Le Japan	• Water-saving vel of Technology in	N/A Applied to more than 30 heat treatment furnaces.				
8. Japanese Main	Supplier	Daido Steel Co., Ltd.				
9. Technologies R	deference:	Japanese patent No.6587411 (Radiant tube type heating device) Japanese patent No.6790554 (Radiant tube type heating device)				
10. Preconditions		Investment cost and benefit vary depending on furnace specification, operation condition, fuel cost, etc of each customer.				
ι		<u>^</u>				

Contact Points of Suppliers

Company	Contact Points	Technologies
JP Steel Plantech Co.	Kaneko 2nd Building 4-9F 2-6-23 Shin-yokohama, Kohoku-ku, Yokohama 222-0033 JAPAN Phone: +81-45-471-3911 Fax: +81- 45-471-4002 https://steelplantech.com/en/	 A-1: High temperature continuous scrap preheating EAF A-3: High efficiency oxy-fuel burner/lancing for EAF A-4: Eccentric bottom tapping (EBT) on existing furnace A-5: Ultra high-power transformer for EAF A-6: Optimizing slag foaming in EAF A-7: Optimized power control for EAF A-7: Optimized power control for EAF A-11: Waste heat recovery from EAF A-12: Energy saving for dedusting system in EAF meltshop B-1: Exhaust gas treatment through gas cooling, carbon injection, and bag filter dedusting for EAF B-2: Floating dust control in EAF meltshop B-4: Dioxin adsorption by mixing EAF exhaust gas with building dedusting gas B-5: Dioxin adsorption by 2 step bagfilter technology for EAF exhaust gas B-6: PKS charcoal use for EAF
Daido Steel Co., Ltd .	1-10, Higashisakura 1-chome, Higashi-ku, Nagoya, Aichi, 461-8581, Japan <u>TEL:+81-52-963-7501</u> FAX: +81- 52-963-4386 <u>https://www.daido.co.jp/</u>	 A-2: Medium temperature batch scrap preheating EAF A-3: High efficiency oxy-fuel burner/lancing for EAF A-4: Eccentric bottom tapping (EBT) on existing furnace A-5: Ultra high-power transformer for EAF A-6: Optimizing slag foaming in EAF A-8: Operation support system with EAF meltdown judgment A-12: Energy saving for dedusting system in EAF meltshop A-13: Bottom stirring/stirring gas injection A-16: Arc furnace with shell rotation drive B-1: Exhaust gas treatment through gas cooling, carbon injection, and bag filter dedusting for EAF B-2: Floating dust control in EAF meltshop B-4: Dioxin adsorption by mixing EAF exhaust gas with building dedusting gas B-5: Dioxin adsorption by 2 step bagfilter technology for EAF exhaust gas C-1: EAF dust and slag recycling system by oxygen-fuel burner E-4: Highly efficient combustion system for radiant tube burner
Nikko Industry Co., Ltd.	2-4-10, Nunobiki-cho, Chuo-ku, Kobe-city, Hyogo 651-0097. Japan TEL : +81-78-222-1688 FAX : +81- 78-222-2916 <u>https://www.nikko- japan.co.jp/home_en/</u> E-mail : <u>nikko@nikko-japan.co.jp</u>	 A-3: High efficiency oxy-fuel burner/lancing for EAF A-4: Eccentric bottom tapping (EBT) on existing furnace A-5: Ultra high-power transformer for EAF A-6: Optimizing slag foaming in EAF A-13: Bottom stirring/stirring gas injection B-1: Exhaust gas treatment through gas cooling, carbon injection, and bag filter dedusting for EAF B-4: Dioxin adsorption by mixing EAF exhaust gas with building dedusting gas B-5: Dioxin adsorption by 2 step bagfilter technology for EAF exhaust gas C-2: EAF slag agglomeration for aggregate use
Chugai Ro Co., Ltd.	3-6-1 Hiranomachi, Chuo-ku, Osaka 541-0046, Japan TEL: +81-6-6221-1251 FAX: +81- 6-6221-1411 https://chugai.co.jp/en/	 A-9: Low NOx regenerative burner system for ladle preheating A-10: Oxygen burner system for ladle preheating D-1: Process control for reheating furnace D-2: Low NOx regenerative burner total system for reheating furnace D-3: High temperature recuperator for reheating furnace D-4: Fiber block for insulation of reheating furnace D-7: Oxygen enrichment for RHF combustion air
Nippon Furnace Co., Ltd.	2-1-53, Shitte, Tsurumi-ku, Yokohama City, Kanagawa Prefecture, 230-8666 Japan TEL.+81-45-575-8111 FAX.+81- 45-575-8046 <u>http://www.furnace.co.jp/en.html</u> E-mail.webmaster@furnace.co.jp	 A-9: Low NOx regenerative burner system for ladle preheating A-10: Oxygen burner system for ladle preheating D-2: Low NOx regenerative burner total system for reheating furnace D-7: Oxygen enrichment for RHF combustion air
Fuji Electric Co., Ltd.	Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan https://www.fujielectric.com/contact/ ?ui_medium=gl_glnav	 A-5: Ultra high-power transformer for EAF A-12: Energy saving for dedusting system in EAF meltshop A-14: Induction type tundish heater E -1: Inverter (VVVF; Variable Voltage Valuable Frequency) Drive for Motors E-2: Energy monitoring and management systems
Fuji Car Manufacturing Co., Ltd.	13-1 Chishiro-cho, Moriyama-city, Shiga, JAPAN 524-0034 TEL +81-77-583-1235 / FAX +81-	A-15: Scrap pretreatment with scrap shear

JFE Engineering Corporation	77-582-8805 http://www.fujicar.com/ENG_fujicar/ 2-1,Suehiro-cho,Tsurumi- ku,Yokohama 230-8611, JAPAN http://www.jfe-eng.co.jp/en/	B-3: Dioxin adsorption by activated carbon for EAF exhaust gas
Rozai Kogyo Kaisha Ltd.	2-14, Minamihorie 1-chome, Nishi- ku, Osaka, Japan 550-0015 Phone: +81 6-6534-3609 / Fax: +81 6-6534-3602 http://www.rozai.co.jp/en/company/i ndex.html	 D-1: Process control for reheating furnace D-2: Low NOx regenerative burner total system for reheating furnace D-3: High temperature recuperator for reheating furnace D-4: Fiber block for insulation of reheating furnace D-7: Oxygen enrichment for RHF combustion air
Mitsui E&S Power Systems Inc.	MESPS Tokyo Office: TEL +81-3-6806-1075 FAX +81-3- 5294-1121 https://www.mesps.co.jp/contact/ind ex.html	D-6: Induction type billet heater RHF for direct rolling

ANNEX 1 Used Values and Applied Preconditions

Pre-Conditions for Calculating Electricity and/or Thermal Energy Savings

Capacity and performance of the model steel plant to study costs and effects of energy saving project are assumed as below:

- 1) 100 % scrap use EFA plant to produce mild steel for construction use
- 2) Annual production is 500,000 ton/y with 80 ton EAF
- 3) Unit electricity consumption of EAF is 430 kWh/ton-billet
- 4) Unit thermal consumption of reheating furnace is 1,450 MJ/ton-billet
- 5) The plant possesses conventional facilities, without advanced technologies

Equipment List of Model Steel Plant

Annual Production			500,000 ton/y (594,000 ton/	
EAF		RHF		
Equipment Name	Value	Equipment Name		Value
Nominal capacity	80 ton	Туре		Walking beam
TTT	52 minutes	Nominal	capacity	100 ton/h
Iron source	100 % scrap	Heated m	naterial	135 SQ billet
Scrap preheating	none	Heating t	emperature	1100 degC
Scrap charging	3 times	Fuel		Natural gas, LHV 44 MJ/m3N
Ladle furnace	used	Combusti	on air preheating	around 300 degC with low grade recuperator
NG burner	used only to facilitate melting	Air ratio fo	or combustion	1.20 for all zones
O2 and C lances	installed only at slag-door side, water-cooled type	furnace te	r control to set emperature with sfer simulation	none
Process control by exhaust gas analysis and/or computer	none	Hot charg rolling	ge and/or direct	none
Electricity consumption	430 kWh/ton	Insulation		firebrick
Oxygen consumption	30 m3N/ton	Heat cons	sumption	1,330 MJ/ton-steel
Natural gas consumption	20 m3N/ton			
Coke consumption	15 kg/ton			
Product	Mild steel less than 0.2 % C			
Tapping temperature	1620 degC			
Atmosphere condition	25 degC with	relative hu	midity 60 %	

Pre-Conditions for Calculating the profit, assumed investment cost, payback time and CO2 emission reductions

- 1) For calculating the profit, assumed investment cost and payback time for each technologies listed on the Technologies Customized List, the values shown on the table "Energy price, plant cost, and CO2 emission factor in India" were applied.
- 2) The assumed investment cost in India for each technology is calculated by multiplying "plant cost index" to the assumed investment cost in Japan.
- 3) CO2 emission reduction is calculated for each technology by using emission factor of electricity in India and the common value of CO2 emission rate from fuel (63.1 kg-CO2/GJ).

Country	Electricity price for industry use ¹⁾ (US\$/kWh)	Fuel gas price for industry use ¹⁾ (US\$/GJ)	Plant cost index ²⁾ (Japan = 100.0)	CO2 emission factor ³⁾ (ton-CO2/MWh)
India	0.100	18.73	72.9	0.905
Japan (for reference)	0.143	19.11	100.0	0.434 4)

Energy price, plant cost, and CO2 emission factor in India

Source 1) JETRO website (2021)

- 2) 2019PCI_LF_summary.pdf, Japan Machinery Center for Trade and Investment
- 3) average of combined margin from CDM projects, IGES website (2021.2.23)

4) Tokyo Electric Power Company website (2021)

