ASEAN Technologies Customized List 2022 version Part-1 : EAF (v.3.2)

Recommended technologies for energysaving, environmental protection and recycling in ASEAN iron and steel industry

The Japan Iron and Steel Federation

Introduction

Overview

"Technologies Customized List" is a technology reference containing energy-saving, environmentalprotection and recycling technologies, developed under a collaborative scheme of ASEAN-Japan Steel Initiative (AJSI) between ASEAN 6 countries (Indonesia, Malaysia, Philippines, Singapore, Thailand and Vietnam) and Japan. The list is aimed at identifying appropriate technologies for the ASEAN steel industry and the first version of the list was published in November 2014.

The list reflects the knowledge acquired from public and private experiences of the Japanese steel industry, which achieves the highest energy efficiency in the world, and the technology needs of ASEAN steel industry. In this context, contents of the list are informative for public sectors for development of policies and measures, as well as for private sectors for the plan of the technology introduction and improvement of energy management activities in steel plants.

After the publication of the Technologies Customized List Version 1, the list was employed on many occasions such as Steel Plant Diagnosis and Public and Private Collaborative Workshops. Through these activities, additional technology needs were specified. In particular, in response to the growing introduction of BF-BOF type steel plants in ASEAN countries, Technologies Customized List 2022 version is developed as a two-part series. Technologies Customized List v.3.2 Part-1 is for EAF plants, and v.4.0 Part-2 is for BF-BOF plants.

What is ASEAN-Japan Steel Initiative?

Development process of Technologies Customized List

Technologies on the Technologies Customized List are considered to contribute to energy saving, environmental protection and recycling in ASEAN steel industry. They were chosen from several technology references^{*1} in the world, based on the following criteria.

- 1. **Coverage**: Technologies Customized List contains the technologies for energy saving, environmental protection and recycling in the steel plants in ASEAN region. Technologies for other purposes, such as quality improvement and production increase, are not covered in Technologies Customized List.
- 2. **Availability**: Target technologies should be commercially available. Technologies under development in Japan, which the supplier companies are not ready to diffuse in ASEAN region, are not eligible for Technologies Customized List.
- 3. **Experience**: Steel experts in Japan have technological knowledge and experiences.

Recommended technologies for energy saving, environment protection, and recycle are listed on Technology Customized List for ASEAN

2022 version Part-1: EAF (v.3.2) January, 2022

- NEDO Handbook
- EU-IPCC BAT
- USA-EPA-BACT

^{*1} Reference List

[•] The State–of-the-Art Clean Technologies (SOACT) for Steelmaking Handbook

Table of Contents

1. Technologies Customized List	4
2. Technologies One-by-One Sheet	8
Contact Points of Suppliers	43
ANNEX 1. Expected effects in each ASEAN country	45

1. Technologies Customized List

Pre-Conditions for Calculations of Effects

Capacity and performance of the model steel plant to study costs and effects of energy saving project are assumed as below:

- 1) 100 % scrap use EFA plant to produce mild steel for construction use
- 2) Annual production is 500,000 ton/y with 80 ton EAF
- 3) Unit electricity consumption of EAF is 430 kWh/ton-billet
- 4) Unit thermal consumption of reheating furnace is 1,450 MJ/ton-billet
- 5) The plant possesses conventional facilities, without advanced technologies

Equipment List of Model Steel Plant

Annual Production	Annual Production				
EAF		RHF			
Equipment Name	Value	Equipment Name	Value		
Nominal capacity	80 ton	Туре	Walking beam		
ТТТ	52 minutes	Nominal capacity	100 ton/h		
Iron source	100 % scrap	Heated material	135 SQ billet		
Scrap preheating	none	Heating temperature	1100 degC		
Scrap charging	3 times	Fuel	Natural gas, LHV 44 MJ/m3N		
Ladle furnace	used	Combustion air preheating	around 300 degC with low grade recuperator		
NG burner	used only to facilitate melting	Air ratio for combustion	1.20 for all zones		
O2 and C lances	installed only at slag-door side, water-cooled type	Computer control to set furnace temperature with heat transfer simulation	none		
Process control by exhaust gas analysis and/or computer	none	Hot charge and/or direct rolling	none		
Electricity consumption	430 kWh/ton	Insulation	firebrick		
Oxygen consumption	30 m3N/ton	Heat consumption	1,330 MJ/ton-steel		
Natural gas consumption	20 m3N/ton				
Coke consumption	15 kg/ton				
Product	Mild steel less than 0.2 % C				
Tapping temperature	1620 degC				
Atmosphere condition	25 degC with	relative humidity 60 %			

Technologies Customized List for Energy Saving, Environmental Protection, and Recycling for ASEAN Steel Industry 2022 version (v.3.2) part 1: EAF

				Expected effects of introduction				Assumed investment cost		
No.	в	Title of technology	Technical description	Electricity saving	Thermal energy saving	Profit of 2) Operation cost	Environmental	Co bonofits	Assumed investment cost 4)	Payback time
				(kWh/t of product)	(GJ/t of product)	(US\$/t of product, Japan)	benefits	Co-denents	(million US\$ in Japan)	(year in Japan)
A. E	nergy S	aving for Electric Arc Fur	nace (EAF)	1			T	T.	r	
1	A-1	High temperature continuous scrap preheating EAF	Combination of the technologies of - Air tight structure - High temperature scrap preheating (over 700 degC) - Continuous preheated scrap charging - Automatic process control by using data logging - Post-combustion of generated CO gas - Dioxin decomposition by secondary combustion	150.0	-	21.45	- Decomposition and reduction of dioxin, dispersing dust, & noise	- Low electrode consumption (0.8 - 1.0 kg/ton-product at AC)	38.00	3.5
2	A-2	Medium temperature batch scrap preheating EAF	 High melting efficiency batch charging type EAF with SPH. Preheated scrap temperature is about 250 - 300 degC. Fully enclosed automatic charging system to keep working floor clean. Minimize scrap oxidation by temperature controlling Material limitation free 	40.0	-	5.72	- Reduction of dioxin emission, dispersing dust, & noise	-No limit of material for high quality products as like stainless steel.	10.00	3.5
3	A-3	High efficiency oxy-fuel burner/lancing for EAF	 Supersonic or coherent burner Accelerate scrap melting during melting stage Facilitate slag foaming during refining stage over the bath 	14.3	-	2.04	-	 Reduction of nitorgen in steel for quality improvement 	2.05	2.0
4	A-4	Eccentric bottom tapping (EBT) on existing furnace	- Slag free tapping - Reliable stopping and scraping mechanism	15.0	-	2.15	-	 Increase in Fe & alloy yield, productivity Improve steel quality 	4.00	3.7
5	A-5	Ultra high-power transformer for EAF	 Long arc by high voltage and low ampere operation Water cooled wall-panel to protect refractories 	15.0	-	2.15	-	- Procuctivity increase	5.66	5.3
6	A-6	Optimizing slag foaming in EAF	 Proper chemical ingredients of slag High efficient burner and/or lance Controlled O2 & C injection into EAF proper position Keeping slag thickness with air-tight operation 	6.0	-	0.86	- Noise reduction & working floor cleaning	-	1.50	3.5
7	A-7	Optimized power control for EAF	 Data logging and visualization of melting process Automatic judgement on meltdown and additional scrap charge Automatico phase power independent control for well- balanced melting 	15.0	-	2.15	-	 Productivity increase Manpower saving 	2.50	2.3
8	A-8	Operation support system with EAF meltdown judgment	Automatic Rapid Melting system - Data logging - Optimum electric power control - Alloy calculation - Automatic meltdown Judgment	6.0	-	0.74	-	 Productivity increase Manpower saving Operation standardization 	0.65	1.5
9	A-9	Low NOx regenerative burner system for ladle preheating	- Regenerating burner use - High Energy Saving (about 40 %) - Automatic control - FDI Combustion	-	0.20		- NOx reduction	Contribute to better atmosphere around at workfloor	0.40	0.2
10	A-10	Oxygen burner system for ladle preheating	 Rapid and high temperature ladle heating by oxygen burner Automatic control High Energy Saving (about 40 %) 	-	0.20		- NOx reduction	Contribute to better atmosphere around at workfloor	0.30	0.2
11	A-11	Waste heat recovery from EAF	 Waste heat boiler based on the OG boiler technology Specified for splash and dust containing 	132.0	-	18.88	-	-	60.00	6.4
12	A-12	Energy saving for dedusting system in EAF meltshop	Damper openings and exhaust fan rotation are controlled in consonance Combination of VVVF and proper damper opening	6.0	-	0.86	- Better working floor & atmosphere	-	0.80	1.9
13	A-13	Bottom stirring/stirring gas injection	- Inject innert gas (Ar or N2) into the bottom of EAF - Better heat transfer steel quality	18.0	-	2.57	-	- Fe yield increase 0.5 %	0.26	0.2
14	A-14	Induction type tundish heater	 Application of induction heating Possible to uniformize temperature in 3 minutes after power supply 	3.0	-	0.43	-	-	1.00	4.7
15	A-15	Scrap pretreatment with scrap shear	 Long size or low bulk-density scrap is shredded and packed. Scrap pretreatment decreases the scrap-charging frequency, which will lead to energy saving. 	20.0	-	2.86	-	Fe yield increase in 1.5 % (by Non-integrated steel producer's association)	3.80	2.7
16	A-16	Arc furnace with shell rotation drive	 By rotating furnace shell 50 degree back-and-force, cold spot will be decreased to realize smooth melting. Assumed investment cost is the increase from the newly constructed conventional EAF. 	32.0	-	4.58	-	 Decreasing power-on time, melting fuel, and refractory material 	6.00	2.6

				Expected effects of introduction				Assumed inve	estment cost	
No.	Ю	Title of technology	Technical description	Electricity saving	Thermal energy saving	Profit of 2) Operation cost	Environmental		Assumed investment cost 4)	Payback time
				(kWh/t of product)	(GJ/t of product)	(US\$/t of product, Japan)	benefits	Co-benefits	(million US\$ in Japan)	(year in Japan)
B. E	nviron	mental Protection for Elect	ric Arc Furnace	1	1		T	Î.	Î.	
17	B-1	Exhaust gas treatment through gas cooling, carbon injection, and bag filter dedusting for EAF	 Improved design configuration of the direct evacuation for treating hot unburned gas from much fuel use Minimize dust and gas dispersion from EAF with enough capacity and suitable control 	-	-	-	- Better workfloor & environment	-	-	
18	B-2	Floating dust control in EAF meltshop	- Analyze air flow in EAF building	-	-	-	 Restrict dust loading on working floor to less than 5 mg/m³ 	-	1.00	
19	B-3	Dioxin adsorption by activated carbon for EAF exhaust gas	 Packaged cartridges of activated carbon fixed at the exit of bag-filter adsorbs and removes dioxins and heavy metals to an extremely low levels 	-	-	-	- Dioxin will be lower than 0.5 ng TEQ/m ³ N	-	-	
20	B-4	Dioxin adsorption by mixing EAF exhaust gas with building dedusting gas	 Cooling direct evacuation gas by mixing with building dedusting gas 	-	-	-	- Dioxin will be lower than 5.0 ng TEQ/m ³ N	-	-	
21	B-5	Dioxin absorption by 2 step bagfilter technology for EAF exhaust gas	 2 step bag system can remove over 99% DXN's from EAF. This system provide a clean working environment. Effective evacuation decrease the consumption of electricity. 	-	-	-	- Dioxin will be lower than 0.5 ng TEQ/m ³ N	-	-	
22	B-6	PKS charcoal use for EAF	- Charcoal made from PKS can be used instead of injected coke into EAF.	-	-	-	- 39,000 ton-CO2/y GHG reduction	-	-	
C. M	lateria	Recycle for Electric Arc F	urnace							
23	C-1	EAF dust and slag recycling system by oxygen-fuel burner	- Zn recovery rate will be expected to be 95% -Remove heavy metals from dust and turn into harmless	-	-	-	-	- Zn material and heavy aggregate can be gained from EAF dust	-	
24	C-2	EAF slag agglomeration for aggregate use	 Molten slag is rapidly cooled by jet air, and becomes 0.5 - 3.0 mm heavy and strong ball. Suited to use aggregate mixed with cement 	-	-	-	- Slag satisfies the safety code	- Saved processing time: 10 minutes	1.00	
D. E	nergy S	Saving for Reheating Furn	ace							
25	D-1	Process control for reheating furnace	 Setting furnace temperature by targeted billet temperature curve Precise air ratio control and O2 analysis in exhaust gas 	-	0.050	0.96	-	-	2.50	
26	D-2	Low NOx regenerative burner total system for reheating furnace	- High efficient and durable burner system	-	0.189	3.61	- CO2 & NOx Reduction	-	8.00	
27	D-3	High temperature recuperator for reheating furnace	- Heat transfer area is expanded - Special material tube is used instead of stainless	-	0.100	1.91	-	-	1.50	
28	D-4	Fiber block for insulation of reheating furnace	- Low thermal conductivity - High temperature change response (low thermal-inertia)	-	0.039	0.75	- Reduction of Heat accumulation	-	1.50	
30	D-6	Induction type billet heater for direct rolling	Compensate temperature drop of billets transferred from CC to rolling mill (from 950 degC to 1050 degC). Advantages : - Automatic control - Less exhaust gas (without reheating furnace)	-40.0	1.45	21.99	- Better working floor & atmosphere	-	1.00	
31	D-7	Oxygen enrichment for combusiotn air	Thermal energy will be reduced with the decrease in the volume of exhaust gas. Assumed oxygen percentage in combustion air is 39 % in the study. Equipment of oxygen generator is not estimated, it is sometime rental use. Only electric power to generate pxygen is examined (0.5 kWh/m3N)	-23.6	0.26	1.59	- Smaller exhaust gas volume from the stack		-	
E. C	ommon	systems and General Ener	gy Savings	r		[
32	E-1	Inverter (VFD; Variable Frequency Drive) drive for motors	Applying the Multi-Level Drive for motors enables to save energy cost from vane and valve control (constant speed motor). *Eco-Friendly *Dower Source Friendly *Less Maintenance *Motor Friendly	13%	-	-	- CO2 Reduction	-	1.50	
33	E-2	Energy monitoring and management systems	- Energy data are collected in process computer for evaluation	-	0.120	2.29	-	-	-	
34	E-3	Management of compressed air delivery pressure optimization	Energy saving in compressors requires consideration of the following points. * Selection of the appropriate capacity * Reduction in delivery pressure	285 MWh/y	-	-	-	-		
35	E-4	Highly efficient combustion system for radiant tube burner	Silicon-carbide parts are inserted into the radiant tube to promote heat transfer from hot gas to the tube, which improve thermal efficiency of the furnace. Production of the target plant is assumed as 594,000 ton/y (CGL) with natural gas use.	-	0.0896	1.71	- CO2 Reduction	-	2.90	2.9

2. Technologies One by One Sheets

A-1		A. Energy Saving for Electric Arc Furnace (EAF)				
		High temperatu	re conti	nuous scrap pr	eheating EAF	
Item				Content		
Item		Image: second	Over. Over. O deg.C Sec. Sec. Ign Inbustion mber ke, Odor osition	Building Suction . Spray Chamber Prevent DXN Re-composition	Air 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
2. Technology Definition/Specification		Preheating scraps with high-temperature ex- directly and rigidly connected, so the scrap This enables high-temperature preheating of The melting chamber is sealed off from ou under high temperature preheating. As this significantly improved. Furthermore, the electric facilities necessar even unnecessary depending on required re Dioxins are decomposed through an exhau system. Not only dioxins but also a volatile dispersal of them are also prevented. The fu- exhaust gas can be used as fuel, reducing t during operation. The reduction of power of during power generation.	whaust gas is p os are continua of the scraps, r tside air, to pro- equipment kee ry to meet pow egulation. Ist gas combus e material that urnace prevent he amount of f consumption a	ossible because the preheati lly present, from the steel to resulting in a significant redu- event the excess air inlet. It p eps always flat bath operation ver quality regulation can be tion chamber and rapid quer causes foul odors and white s diluting of exhaust gasses. fuel gas consumed.Flat bath lso contributes to the reduct	ng shaft and melting chamber are preheating areas. action of power consumption. prevents over oxidation of scrap on, electrode consumption is drastically reduced on it may not hch chamber in the exhaust gas duct smoke will be decomposed and the Therefore, the CO within the operation dramatically reduces noise ion of emission of greenhouse gasses	
	•Electricity Saving	150 kWh/ton-product				
3. Expected Effect of	•Thermal Energy Savings	-				
Technology Introduction	•Environmental benefits	Decomposition of dioxin, reducing dispers	ing dust, & no	ise		
	•Co-benefits	Low electrode consumption (0.8 - 1.0 kg/te	on-product at A	AC)		

4. Japanese Main Supplier	JP Steel Plantech
5. Technologies Reference SOACT 2nd Edition ("Ecological and Economical Arc Furnace"), Diagram from JP Steel Plantech	
6. Comments	

		A. Energy Saving for Electric Arc Furnace (EAF)
A	L -2	Medium temperature batch scrap preheating EAF
	Item	Content
Item		
2. Technology Definition/Spe	ecification	 High melting efficiency batch charging type EAF with SPH. Preheated scrap temperature is about 250 - 300 degC. Fully enclosed automatic charging system to keep working floor clean. Minimize scrap oxidation by temperature controlling Material limitation free
	•Electricity Saving	40 kWh/ton-product
3. Expected Effect of	• Thermal Energy Savings	-
Introduction	• Environmental benefits	Reduction of dioxin emission, dispersing dust & noise
	•Co-benefits	No limit of material for high quality products as like stainless steel.
4. Japanese M	lain Supplier	Daido Steel
5. Technologie	es Reference	
6. Comments		

		A. Energy Saving for Electric Arc Furnace (EAF)				
A	4-3	High efficiency oxy-fuel bur	ner/lancing for EAF			
	Item	Content				
Item		<image/>	<text><text><image/></text></text>			
2. Technology Definition/Specification		 'Conventional oxygen lances inserted through slag door causes; Local oxygen input near the slag door Uneven slag foaming through the bath Uneven post-combustion of generated CO Much hot gas escape caused by the cold air infiltration through the 	slag door			
	•Electricity Saving	14.3 kWh/ton-product				
3. Expected	• Thermal Energy	-				
Technology	• Environmental					
Introduction	benefits	-				
	•Co-benefits	Reduction of nitorgen in steel, quality improvement				
4. Japanese N	1 Iain Supplier	Daido Steel, Nikko, JP Steel Plantech				
5. Technologies Reference		SOACT 2nd edition (Add the word "High efficiency" to SOACT item for up-to-date oxygen use), Diagram from Nikko				

<Source of "Electricity saving"> $0.14 \text{ GI/ton in SOACT} > 0.14 \times 9.8/1000 = 14.3 \text{ kWh/ton}$

0.14 GJ/101 III SOAC1 = 0.14 X 9.8/1000 = 14.3 KWII/101	

3. Expected	 Thermal Energy 	
Effect of	Savings	
Technology	•Environmental	
Introduction	benefits	-
	•Co honofita	Increase in Fe & alloy yield, and productivity
	-Co-belletits	Improve steel quality
4. Japanese M	ain Supplier	JP Steel Plantech, Daido Steel, Nikko
5. Technologie	es Reference	EPA-BACT (Sep. 2014), Diagram from JP Steel Plantech
6. Comments		<preconditions and="" calculating="" costs="" effects="" investment="" on=""> - Values of "Electricity saving" are based on the EPA-BACT (Sep. 2014) & equipment supplier's rough estimation - "Profit" does not include such other advantages than electricity saving</preconditions>

		A. Energy Saving for Electric Arc Furnace (EAF)					
A	1-5	Ultra high-power transformer for EAF					
	Item	Content					
Item 1. Process Flow or Diagram		 Forced-Oil Forced-Water Cooling type (OFWF) / 法加水冷式 Water-cooled oil cooler + oil pump か冷クーマー+送池ボンプ Single tube or double tube cooler 一声音 or 二重首クーラー 					
		TRANS:17 TAPS TRANS:17 TAPS TRANS:17 TAPS TRANS:17 TAPS TRANS:17 TAPS TRANS:17 TAPS TRANS:17 TAPS Trans Trans:17 Taps Trans:17 Taps Trans:1					
2. Technology Definition/Specification		In the conventional system, series reactor was used for the early melting stage in order to stabilize arc and control of a flicker . Since High-Efficiency Furnace Transformer provides high impedance at early melting stage, series reactor is not required, though the same performance is achieved. - Reduce electric power consumption - Reduce electrode consumption - Shorten tap to tap time 'In addition, it will conduct a fine-grained control by adding a reactor.					
	•Electricity Saving	15 kWh/ton-product					
3. Expected Effect of	• Thermal Energy Savings	-					
Technology Introduction	•Environmental benefits	-					
	•Co-benefits	Increase productivity					
4. Japanese M	lain Supplier	Fuji Electric, JP Steel Plantech, Daido, Nikko					
5. Technologie	es Reference	EPA-BACT ("Transformer efficiency - ultra-high power transformers"), Diagram from Nikko					

6. Comments

<Preconditions on calculating effects>
- "Electricity saving" 15 kWh/ton-product comes from EPA-BACT,
assuming that 44 MVA transformer for 80 ton EAF is revamped to 55 MVA.

A-6		A. Energy Saving for Elect	ric Arc Furnace (EAF)			
		Optimizing slag foaming in EAF				
	Item	Content				
		Inferior slag foaming	Improved slag foaming			
		Coherent burner backside				
1. Process Flow or Diagram		Image: Constraint of the second s	C-Injection Generation C-Injection C-Inj			
2. Technology Definition/Sp	ecification	 Proper chemical ingredients of slag (Basicity 1.5 - 2.2, FeO 15 High efficient burner and/or lance Controlled O2 & C injection into EAF proper position Keeping slag thickness with air-tight operation 	- 20 %)			
	•Electricity Saving	6 kWh/ton-product				
3. Expected Effect of	• Thermal Energy Savings	-				
Technology Introduction	•Environmental benefits	Noise reduction & working floor cleaning				
	•Co-benefits	-				
4. Japanese Main Supplier		JP Steel Plantech, Daido Steel, Nikko				
5. Technologi	es Reference	SOACT 2nd Edition (Delete the word "Exchangeable Furnace an Plantech	nd Injection Technology"), Diagram from JP Steel			
6. Comments		<source "electricity="" of="" saving"=""/> (1) 2.5 - 3 % energy saving in SOACT> 430 kWh/ton x 0. (2) The phenomenum is explained by several factors, 6 kWh/t	03 = 12.9 kWh/ton ton is reasonable (Japanese experts).			

	sorrer 2nd Edition (improved riveess control (reduct retworks)); Didgram nom sr steer ranteen
6. Comments	-

A-9 A. Energy Saving for Electric Arc Furnace (EAF) Low NOx regenerative burner system for ladle preheat		A. Energy Saving for Electric Arc Furnace (EAF)	
		Low NOx regenerative burner system for ladle preheating	
	Item Content		
Item 1. Process Flow or Diagram		Combustion air blower Control 200 Control	
 2. Technology Definition/Specification While one of the burners is burning, the other burner will work as an exhaust outlet. The exhaust gas is dischart the system after the waste heat of the gas is recovered so that the temperature of the gas will be lowered to the there will be no condensation in the regenerator. The combustion air receives heat from the regenerator. There combustion air will be preheated to a super-high temperature (i.e., 90% of the temperature of the exhaust gas before the combustion air is supplied to the burner. When the preset cycle time elapses, the burners exchange of combustion and exhaustion. 		While one of the burners is burning, the other burner will work as an exhaust outlet. The exhaust gas is discharged from the system after the waste heat of the gas is recovered so that the temperature of the gas will be lowered to the extent that there will be no condensation in the regenerator. The combustion air receives heat from the regenerator. Therefore, the combustion air will be preheated to a super-high temperature (i.e., 90% of the temperature of the exhaust gas or over) before the combustion air is supplied to the burner. When the preset cycle time elapses, the burners exchange their roles of combustion and exhaustion.	
	•Electricity Saving	-	
3. Expected Effect of	•Thermal Energy Savings	40 % fuel saving is expected comparing to existing preheater with conventional burner. 900 m3N natural gas in 6 hour burning for 80 ton ladle consumes about 40 GJ> 0.5 GJ/ton-steel x 40 % = 0.2 GJ/ton- steel save	
Introduction	•Environmental benefits	Low NOx	
	•Co-benefits	Higher brick temperature can allow lower tapping temperature for energy saving at EAF. Improving meltshop atmosphere by reducing hot gas which disturbs dirty gas suction at the canopy	

4. Japanese Main Supplier	Chugai-Ro, Nippon Furnace
5. Technologies Reference	
6. Comments	-

6. Comments	-

A-11		A. Energy Saving for Electric Arc Furnace (EAF)
		Waste heat recovery from EAF
Item		Content
Item		Image: Coloring with rescharger circulation pump Coloring with rescharger circulation pump Coloring with rescharger circulation pump For application pump
2. Technology Definition/Specification		 Waste heat boiler based on the OG boiler technology Specified for splash and dust containing Main boiler is radiative type, and convective type super heater is located at the downstream of boiler to avoid clogging.
	• Electricity Saving	132 kWh/ton-product
3. Expected Effect of	• Thermal Energy Savings	-
Technology Introduction	•Environmental benefits	-
	•Co-benefits	-
4. Japanese Main Supplier		JP Steel Plantech (yoshidah@steelplantech.co.jp, tel +81-45-471-3917 fax +81-45-471-4002)
5. Technologies Reference		Diagram from JP Steel Plantech, May contact to JP Steel Plantech
6. Comments		<preconditions calculating="" effects="" on=""> - Power generation is 248,000 MWh/year with two 150 ton EAFs for DRI - Assumed annual production by two 150 ton EAF = 500,000 / 80 x 150 x 2 = 1,875,000 ton/y - Unit power generation = 248,000 x 1,000 / 1,875,000 = 132 kWh/ton-product Swited to DBL continuous charging EAE and seren EAE</preconditions>

Salted to Did Continueus charging Did , net setap Did

4. Japanese Main Supplier	Fuji Electric, JP Steel Plantech, Daido, Nikko
5. Technologies Reference Diagram from JP Steel Plantech	
6. Comments	<preconditions calculating="" effects="" on=""> Assumed electricity consumption for building dedusting is 24 kWh/ton-product, and 25 % power saving is expected.</preconditions>

	•Electricity Saving	18 kWh/ton-product 1)
3. Expected Effect of	• Thermal Energy Savings	-
Technology Introduction	•Environmental benefits	-
	•Co-benefits	Fe yield increase 0.5 % 1)
4. Japanese M	lain Supplier	Nikko, Daido Steel
5. Technologies Reference		 EPA-BACT Bottom-stirring in an electric-arc furnace:Performance results at ISCOR Vereeniging Works (The Journal of The South African Institute of Mining and Metallurgy, January 1994
6. Comments		

A-14		A. Energy Saving for Electric Arc Furnace (EAF)
		Induction type tundish heater
Item		Content
Item		<complex-block></complex-block>
2. Technology Definition/Specification		<features for="" heater="" induction="" tundish=""> 1.Uniformity of Element of Molten Steel:Agitation effect by electromagnetic force. 2.High Precision Temperature Control:Target Temp.±2.5degree. 3.High Heating Effciency: More than 90% by channel type inductor. 4.Ease of maintennance:Water cooled feeder with quick connector.Self-cooled type Induction coil and so on.</features>
	•Electricity Saving	3 kWh / ton-product (Effect is calculated comparing to electricity consumption of plasma type heater)
3. Expected Effect of Technology Introduction	•Thermal Energy Savings	-
	•Environmental benefits	-
	•Co-benefits	1.Productivity increase 2.Quality improvement
4. Japanese Main Supplier		Fuji Electric
5. Technologi	es Reference	Fuji Electric <preconditions calculating="" effects="" on=""> - Assumed plasma type tundish heater is installed - Ladle capacity: 200 ton - Operated days: 30 days/month - Electricity intensity of heater: 13.7 kWh/ton</preconditions>

6. Comments

- Heat efficiency: 70%
 Pouring amount: 2.5 ton/min
 Dissolution time: 80 min/charge
 Rised temperature: 40 degeree C
 Number of charges: 8 charges/day
 Monthly production: 48,000 ton
- Annual production: 576, 000 ton

A-15		A. Energy Saving for Electric	c Arc Furnace (EAF)
		Scrap pretreatment w	ith scrap shear
Item		Content	
1. Process Flow or Diagram		<image/>	
		Before scrap pretreatment (0.3 top/m3)	After scrap protecting 10.6
2. Technology Definition/Specification		 Long size or low bulk-density scrap is shredded and packed. For example, bulk density of 0.3 m3/ton can be decreased to 0.6 w Scrap pretreatment decreases the scrap-charging frequency, which 	will lead to energy saving.
	•Electricity Saving	20 kWh/ton-product (reported by Non-integrated steel producer's as	ssociation of Japan)
3. Expected Effect of Technology Introduction	• Thermal Energy Savings	-	
	•Environmental benefits	-	
	•Co-benefits	- Fe yield increase in 1.5 %, TTT shortening	
4. Japanese M	ain Supplier	Fuji Car Manufacturing	
5. Technologie	es Reference		

(Commonto

6. Comments	

4. Japanese Main Supplier	JI Steel Flancen, Daido Steel, Nikko
5. Technologies Reference	SOACT 2nd Edition Recent Progress of Steelmaking Technologiy in Electric Arc Furnace (1993, JISF)
6. Comments	

	 Electricity Saving 	-
3. Expected Effect of	• Thermal Energy Savings	-
Technology Introduction	•Environmental benefits	Restrict dust loading on working floor to less than 5 mg/m3
	•Co-benefits	-
4. Japanese M	ain Supplier	JP Steel Plantech, Daido Steel
5. Technologie	es Reference	Diagram from JP Steel Plantech, May contact to suppliers
6. Comments		

		- This phenomenon is difficilit from the case of incinerators, where the dust does not contains only substances.
	•Electricity Saving	-
3. Expected	Thermal Energy	
Effect of	Savings	
Technology Introduction	•Environmental benefits	Dioxin will be lower than 5.0 ng TEQ/m3N
	•Co-benefits	-
4. Japanese M	ain Supplier	JP Steel Plantech, Daido Steel, Nikko
5. Technologie	es Reference	
6. Comments		

6. Comments	-

D		B. Environmental Protection for Electric Arc Furnace
	5-0	PKS charcoal use for EAF
	Item	Content
Item		Palm kernel skell char coal: coarse size particle Coke: coarse size particle
2. Technology Definition/Specification		 Charcoal made from PKS (Palm Kernel Shell) has similar quality with coke commonly used for carbon injection into EAF Higher heating value, lower sulfur content than fossil fuel coke CO2 generated from charcoal is not counted as GHG (Green House Gas) PKS charcoal is produced for the production of activated carbon in a small scale Equipmet is very simple and can be constructed by local technology Japanese supplier will provide with know-how
	 Electricity Saving 	-
3. Expected Effect of	•Thermal Energy Savings	-
Technology Introduction	•Environmental benefits	39,000 ton-CO2/y GHG reduction from 500,000 ton/y EAF plant
	•Co-benefits	-
4. Japanese M	ain Supplier	JP Steel Plantech
5. Technologie	es Reference	
6. Comments		<preconditions calculating="" effects="" on=""> Replaced coke at EAF : 25 kg/ton-steel C content in coke : 85 % CO2 generation from coke = 0.85 x 44 / 12 = 3.12 ton-CO2/ton-coke</preconditions>

GHG reduction = $500,000$ ton-steel/y x 0.025 x 3.12 = $39,000$ ton-CO2/y

C-1			C. Mat	erial Rec	ycle for E	Electric A	rc Furna	ce	
		EAF dust	t and sla	ag recyc	ling sys	stem by	oxygen	-fuel bu	ırner
	Item				Content	ļ			
1. Process Flo	w or Diagram	TRTTTF ダスト EAF Dust EAF Dust	PI:フラスチック版料 ex: fuel of plostics 粉・粒状原料 Powder or Grain of Row Materials	重油 Haovy Ol 酸素 Oxyger	Ri温火炎 High-Temp Flame ア gas Undered Step Bubbing Gas(Ne)	冷却水 Cooling Weter 空気 Air 空気 Air 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	Aggregate をして売却 として売却 accompositions of raw mater	コレクター Collector 単鉛原料粉 Zinc Raw Materials Zn= 亜鉛原料として売却 Scle to Zinc producer ial	40-55%)
2. Technology Definition/Specification		As dust and slag are me Produced valuable subs More than 99% of diox mechanism. Besides electrical furna The equipment is simpl Through simple design, Also this system can re	elted down cor stances are con in can be remo- ice dust and re le and compac , excels in ope <u>cover expected</u>	npletely at hig npletely harm oved by high t duced slag, it t because of u rability and su d 95% Zn fror	th temperature less and can m emperature tre is expected tha nnecessary pre nitable for on-s n EAF dust as	e, it is very effneet all environe eatment in the at this system etreatment suc- site processing Zn law mater	ective against nmental standa furnace and st will be applied h as dust gran g. ial.	dioxin. ards. crong rapid coo d to other wast ulation and so	oling te treatments. forth.
Electricity Saving Thermal Energy Savings		-							
3. Expected Effect of		Example of the Lea	aching test re	esult of Agg	egate (Notic	e 46 by ME	, Japan)	~]
Technology	• Environmental	mg/l	Pb	Cd	Cr	As	Hg	Se	
introduction	benefits	Aggregate	< 0.006	<0.001	< 0.005	< 0.005	< 0.0005	< 0.004	
		Regulation	0.01	0.01	0.05	0.01	0.0005	0.01	J
	•Co-benefits	Zn material can be gain Heavy aggregate can be	ed from EAF	dust EAF dust					
4. Japanese N	lain Supplier	Daido Steel	-						
5. Technologi	es Reference	Diagram from Daido St	teel, May cont	act to Daido S	lteel				

6. Comments

(wt%)	T-Fe	CaO	SiO ₂	Zn	Pb	Cl	F
Zn raw material	6.5	2.5	0.9	52.3	8.5	7.7	1.
Aggregate	40.1	17.8	10.2	21	< 0.01	0.4	0
E		- trat	10.2	2.1	-0.01	0.1	0.
Expected consump	tion per EAF	F dust			-0.01	0.1	0.
Expected consump Heavy Oil	tion per EAF	f dust L/t-EAF Di	ust]		0.1	0.
Expected consump Heavy Oil Oxygen	tion per EAF 160.0 390.0	f dust L/t-EAF Du m3N/t-EAF	ust 7 Dust			0.1	

	~	C. Material Recycle for Electric Arc Furnace
C-2		FAE slag agglomeration for aggregate use
	Itam	Content
Item		Content Appearance of granulated slag Granulated slag (SEM image) Franulated slag (SEM image) Freatment Process for Electric Arc Furnace Slag Air
2. Technology Definition/Specification		Molten slag is rapidly cooled by jet air, and becomes 0.3-5mm size of spherical structure, -Create strong & heavy fine aggregate material for concrete -Enviromental friendly material -Suitable & meet with JIS A 5011-4 for Electric arc furnace oxidizing slag aggregate. -Require smaller space than normal slag treatment area.
Electricity Saving		Electricity consumption : 6 - 8 kWh/ton-slag
3. Expected Effect of	• Thermal Energy Savings	-
Technology Introduction	•Environmental benefits	-
	•Co-benefits	Reduce disposal cost of industrial waste Processing time for one heat of EAF : 10 minutes
4. Japanese M	lain Supplier	Nikko
5. Technologi	es Reference	Diagram from Nikko

 6. Comments Slag generation : 80 kg/ton-product Yield of granulated slag with this process : 60-70 % 	
---	--

		or over) before the combustion air is supplied the burner. When the preset cycle time elapses, the burners exchange their roles of combustion and exhaustion.
3 Exposted	•Electricity Saving	-
Effect of Technology	• Thermal Energy Savings	0.189 GJ/t (about -13%)
Introduction	•Environmental benefits	CO2 & NOx Reduction
	•Co-benefits	-
4. Japanese M	ain Supplier	Chugai-Ro, Nippon Furnace, Rozai Kogyo
5. Technologie	es Reference	Diagram from Chugai Ro, May contact to suppliers
6. Comments		-

	•Co-benefits	-
4. Japanese Main Supplier		Chugai-Ro, Rozai Kogyo
5. Technologies Reference		Diagram from Chugai Ro
6. Comments		<preconditions calculating="" effects="" on=""> When 300 degC air temperature is raised to 500 degC, 7 % enrgy saving is expected.</preconditions>

Effect ofSavingsTechnology•EnvironmentalIntroductionbenefits						
		Reduction of Heat accumulation				
	•Co-benefits	Quick heat-up and cool-down of the furnace temperature for smooth and enrgy-saving operation.				
4. Japanese M	lain Supplier	Chugai-Ro, Rozai Kogyo				
5. Technologies Reference		Diagram from Chugai Ro and JP Steel Plantech				
6. Comments		<preconditions calculating="" effects="" on=""> assumed surface area of 100 ton/h furnace : 1350 m2 atmosphere temperature : 30 degC surface temp. and heat loss of brick lining case : 130 degC, 7.96 GJ/h surface temp. and heat loss of brick lining case : 90 degC, 4.08 GJ/h (7.96 - 4.08) /100 (ton/h) = 0.0388 GJ/ton> 0.039 GJ/ton saving <notice> High-sulphur fuel may cause problem due to the corrosion of fixing pins.</notice></preconditions>				

Technology •Environmental Introduction benefits		Better working floor and atmosphere
	•Co-benefits	-
4. Japanese Main Supplier		Mitsui E&S Power Systems Inc.
5. Technologies Reference		-
6. Comments		

		D. Energy Saving for Reheating Furnace								
)- /	Oxygen enrichment for combusiotn air								
	Item		Content							
1. Process Flo	w or Diagram	When oxygen is mixed into combusiotn air to increase the O2 percentage, thermal energy will be reduced with the decrease in the volume of exhaust gas. In many EAF plants, oxygen is generated by PSA or VPSA process, therfore, new equipment for oxygen generation is not considered i n this sheet. Only the electric power to generate oxygen is studied to estimate its economical effect.								
2. Technology Definition/	'Specification	Effects of oxygen enrichment are studied for the model RHF of 100 ton/h 1,100 degC billet heating (500,000 ton/y). The upper list shows the required fuel (thermal energy) and volume of oxygen. When oxygen percentage id raised to 42 %, exhaus volume from the furnace reduces to 45 % with 19.5 % fuel saving. The list also shows the required oxygen volume. The oxygen is assumed to be generated by VPSA process, with the purity of 93 %. The bottom list shows the economical effect of oxygen enrichment. Required electric power is assumed as 0.5 kWh/m3N-O2 of 0.1 pressure. Energy price is based on the latest Japanese values of 17.11 US\$/GJ and 0.123 US\$/kWh.						0 42 %, exhaust gas The oxygen is m3N-O2 of 0.1 MP		
		O2 in	Unit heat		Fuel gas	Oxvgen	Ex. ga	as flow rate	Po	wer to
		com. air	cons.	Rate	flow rate	flow rate	fror	n furnace	proc	luce O2
		21 %	1,330 MJ/to	n 100.0 %	3,930 m3N/h	0 m3N	/h 48	,890 m3N/h	() kWh/ton
		24 %	1,230 MJ/to	n 92.5 %	3,638 m3N/h	1,613 m3N	/h 39	,720 m3N/h	8.1	kWh/ton
		27 %	1,182 MJ/to	n 88.9 %	3,483 m3N/h	2,585 m3N	/h 34	,440 m3N/h	12.9) kWh/ton
		30 %	1,140 MJ/to	n 85.7 %	3,363 m3N/h	3,300 m3N	/h 30,	,480 m3N/h	16.5	5 kWh/ton
		33 %	% 1.120 MJ/ton 84.2 %		3,298 m3N/h	3,883 m3N	/h 27	,660 m3N/h	19.4	kWh/ton
		36 %	1,100 MJ/to	n 82.7 %	3,236 m3N/h	N/h 4.338 m3N/h		25,320 m3N/h 21.7		′ kWh/ton
		39 %	1,080 MJ/to	n 81.2 %	3,190 m3N/h	4,715 m3N	/h 23	,430 m3N/h	23.6	6 kWh/ton
		42 %	1.070 MJ/to	n 80.5 %	3.150 m3N/h	5.029 m3N	/h 21	.850 m3N/h	25.1	kWh/ton
					-,,		,	, , , , , , , , , , , , , , , , , , ,		
		O2 in	Required	Fuel cost	Power to	Electri	city cost	Sum o	f	Rate of
		com. air	thermal energy	11.20 mill LIC	produce C)2 prod	uce O2	energy c	ist LIS¢ /v	
		21 %	615 000 GJ/y	10.52 mill US	\$/y 4.050 M	$\frac{Wh}{y}$ 0.50 r	nill US\$/y	11.30 mill	US\$/y	96.8 %
		27 %	591.000 GL/v	10.11 mill US	\$/y 6.465 M	Wh/y 0.79 r	nill LIS\$/y	10.90 mill	US\$/y	95.8 %
		30 %	570 000 GI/v	9 75 mill US	\$/y 8,400 M	Wh/y 1.01 r	nill US\$/v	10.30 mill	US\$/y	94.6 %
		33 %	560.000 GJ/y	9.58 mill. US	\$/v 9.710 M	Wh/y 1.19 r	nill. US\$/v	10.77 mill.	US\$/y	94.6 %
		36 %	550 000 GI/v	9 41 mill US	\$/v 10.845 M	Wh/y 1.33 r	nill US\$/v	10.74 mill	US\$/y	94.3 %
		39 %	540.000 GJ/v	9.24 mill. US	\$/y 11.800 M	Wh/v 1.45 r	nill. US\$/v	10.69 mill.	US\$/v	93.9 %
		42 %	535,000 GJ/y	9.15 mill. US	\$/y 12,550 M	Wh/y 1.54 r	nill. US\$/y	10.69 mill.	US\$/y	93.9 %
	Electricite Corrige	X 71		ing 1 45 20 0/	22 (1-W/l. /4	· -14:-:4:-				
	• Electricity Saving	when oxxygen	percentage is ra	lised to 39 %,	23.0 K w n/ton of	electricity is	needed.			
3. Expected Effect of Technology	Thermal Energy Savings	When oxxygen	percentage is ra	ised to 39 %,	0.26 GJ/ton of th	ermal energy	is saved			
Introduction	benefits									
•Co-benefits										
4. Japanese Main Supplier		Chugai-Ro, Ro	zai Kogyo, Nipp	oon furnace						
5. Technologie	es Reference									
6. Comments		Furnace manufactureres can arrange the oxygen control system and piping revamping.								

		E. Common systems and General Energy Savings			
		Inverter (VVVF; Variable Voltage Valuable Frequency) Drive for Motors			
Item		Content			
1. Process Flow or Diagram - Pumps are running at point "b" after a - Power for pumps is and motor input rati	at point " a" in the current sidoption of an inverter system proportional to " flow rate > o before and after installation	<pre>integrate in the ratio of Q0 × P1 and Q0 × P0.</pre>			
hefore/	after adoption of an inve	rter system. *1			
2. Technology Definition/Spe	cification	<u>Informed with the current situation</u> : Otherany, now rate of centificity pumps and rans is controlled by valves because of uncontollable motor rotation speed, resulting in great power loss (see Fig.1 I and A). <u>* Improvement measures:</u> An inverter system will be adopted in pumps and fans, in order to control the rotation speed according to the load (flow rate) with valves fully open. This results in electricity savings (see Fig.1 I and A). *1 An inverter is a variable speed device controlling frequency and voltage to allow precise control of rotation. Energy saving effect : Conversion of six 55kW electric motors with eddy current coupling, and reduction in power consumption. *2 Calculation conditions/NEDO : * Overall efficiency of conventional electric motors with eddy current coupling : 0.65 * Overall efficiency of electric motors converted to inverter control : 0.80 * Reduction in power consumption by lowering motor speed : 15% (assumed)			
3. Investment Cost & Operat	ting Life	¥2,000,000/unit(assumed) [NEDO]			
4 Effect of Technology	•Reduction of CO2	Not announced			
Introduction	Electricity Savings Economic Effect	125,000 kWh/y [=55kW/unit x 0.7(assumed aveerage motor power) x 6units x 3600h/y x 0.15]			
	(payback time)	1.5 years [NEDO]			
5. Direct Effect (Annual Operating Cost)	Productivity Improvement	Not announced			
	Maintenance Cost Reduction	Not announced			
6. Indirect Effect (Co-benefits)	Product Quality Improvement	Not announced			
7. Diffusion Rate of Technolo	ogy in Japan	No data			
8. Japanese Main Supplier		Fuji Electric			
9. Technologies Reference:		 *1 Guidebook on Energy Conservation for Factories (2010/2011), ed. by The Energy Conservation Center, Japan *2 Energy savings Diagnosis Examples-Common Equipment Volume', Energy conservation Center, Japan 			
10. Preconditions		 * Payback time is defined as (Investment cost / Economical merit) in this project. * annual operation : 3,600 h/y, * unit cost of power : ¥15/kWh 			

E-2		E. Common systems and General Energy Savings					
			Energy 1	nonitoring and	d managemer	nt systems	
	Item			Cor	itent	-	
1. Process Flow or Diagram				Daily and reports o bala	l monthly of energy ance		
		Online monitoring and logging system for energy currents					
			Electric Power	Steam	Steam Fuel		
2. Technology Definition/Specification		This measur - Online mo so that typic It is the ma - Continuou enable ins - Reporting In connect An energy	re includes site energy onitoring: This is often cal situations may be an ain technique used to a us monitoring systems: stant maintenance, und and analyzing tools: R ion with cost controllin controlling system ena	management systems for c used for the most importar nalyzed. It is very importar void energy losses. Since all energy-related pr isrupted production process eporting tools are often us ng, controlling energy is th bles to compare actual data	optimal energy consumpt nt energy flows at the site nt to monitor for all energ cocess parameters are use s could be achieved. ed to check the average e e basis for optimizing en- a with historical data (e.g	ion in the plant. b. The data are stored for a longy sources on online. d to optimize process control energy consumption of each process consumption and cost sates g. charts)	and to rocess vings.
3. Expected Effect of	 Electricity Saving Thermal Energy Savings 	- Energy savi	ing effect depends on t	he local conditions, therefo	ore, quantitative estimatio	on is difficult.	
I echnology Introduction	•Environmental Benefits	-					
4. Japanese M	•Co-benefits	- Fuji Electric	с				

5. Technologies Reference	
6. Comments	

5. Technologies Reference	apanese Technologies for Energy Savings/GHG Emissions Reduction (2008 Revised Edition), editted by NEDO				
6. Comments	Preconditions for trail calculating above - Number of compressors; Total of 17, - Equipment capacity; 823 kW, - Daily operation; 24 h/d,	 *Delivery pressure; 0.8 MPa, *On-load operation load; 60 %, *Annual operation; 241 days' 			

F_1		E. Common systems and General Energy Savings				
		Highly efficient combustion system for radiant tube burner				
1. Process Flow		Silicon-Carbide Inserts for heat radiation Radiant Tube Silicon Carbide Heat Exchanger Burner Burner				
2. Technology Definition/Specification		Radiant tube burner which consists of 1)Radiant tube(U shape or W shape), 2)Gas Burner, 3)3-D formed silicon-carbide Inserts for heat radiation, and 4)Heat exchanger made of 3-D formed silicon carbide. These 3-D formed silicon carbide elements have high thermal conductivity and wide surface area, which allow approx. 10% improvement in heat recovery compared to conventional radiant tube burners with heat exchanger made of steel. Any industrial furnace with radiant tube burner will potentially be applicable and typical applicable furnace will be CGL, Continuous Galvalizing Line or CAL, Continuous Annealing Line, with approx. 100-200 radiant tube burners of 210- 420MJ/hour of rated combustion volume.				
3. Investment Cos & Operating I	t Life	The cost of adding this system into existing furnace will be approximately 1.6 million JPY for one burner which have 420MJ/hour of combustion rate. This includes the cost for installation work and combustion adjustments. Operating life for silicon carbide elements is considered to be semipermanently.				
4. Effect of Technology Introduction	• Reduction of CO2 Emission	 2,654t-CO2/year under assumptions below. 1) 10% of Fuel substitution will be achieved by replacing conventional recupecator into DINCS (Daido Innovative Neo Combustion System) to the CGL with 200 radiant tube burners. 2) Each burners have 420MJ/h of rated combustion volume, and combusted at 80% rate on average. 3) Furnace operation is 330days/year, 24 hours/day. Production capacity is assumed as 594,000 ton/y (75 ton/h x 24h x 330 day/y) 4) The effect is calculated as comparison with steel heat exchanger system 5) Natural gas is used as for combustion. 53222(GJ/year) × 0.0136(tC/GJ) × ⁴⁴/₁₂ = 2,654(tCO2/year) 				
	Fuel Savings	53,222GJ/year under assumptions same as above 0.0896 GJ/ton saving (= 53,222 GJ/y / 594,000 ton-product/y)				
5. Direct Effect (Annual	Economic Effect (payback time)	Approx. 4.9 years under assumptions same as above. Cost for installation work and combustion adjustment are included (1,600,000JPY) and the price of thermal enrgy is assumed to be 19.11 US\$/GJ (2,100 JPY/GJ). Annual profit = 53,222 GJ/y x 19.11 US\$/GJ / 594,000 ton/y = 1.71 US\$/ton-product <calcuation> Payback time = (1,600,000 JPY x 200 units) / (53,222 GJ/y x 2,100 JPY/GJ) = 2.86 year</calcuation>				
Operating Cost)	• Productivity Improvement	Since this system transfers the heat effectivly into the furnace or into product, line speed of the furnacecan be increased which results in productivity improvement, if there is no restrictions for the equpment other than the combustion system.				
	Maintenance Cost Reduction	Conventional heat exchanger made of steel usually requires replacement every 3-4 years, but silicon carbide elements will not deteriorate over time and last semipermanently.				
	• Product Quality Improvement	N/A				
6. Indirect Effect (Co-benefits)	• SOx, Dust Decrease	N/A				
7. Proficiency Lev Janan	• Water-saving el of Technology in	N/A Applied to more than 30 heat treatment furnaces.				
8. Japanese Main	Supplier	Daido Steel Co., Ltd.				
9. Technologies R	eference:	Japanese patent No.6587411 (Radiant tube type heating device) Japanese patent No.6790554 (Radiant tube type heating device)				
10. Preconditions		Investment cost and benefit vary depending on furnace specification, operation condition, fuel cost, etc of each customer.				

Contact Points of Suppliers

Company	Contact Points	Technologies		
JP Steel Plantech Co.	Kaneko 2nd Building 4-9F 2-6-23 Shin-yokohama, Kohoku-ku, Yokohama 222-0033 JAPAN Phone: +81-45-471-3911 Fax: +81- 45-471-4002 https://steelplantech.com/en/_	 A-1: High temperature continuous scrap preheating EAF A-3: High efficiency oxy-fuel burner/lancing for EAF A-4: Eccentric bottom tapping (EBT) on existing furnace A-5: Ultra high-power transformer for EAF A-6: Optimizing slag foaming in EAF A-7: Optimized power control for EAF A-11: Waste heat recovery from EAF A-12: Energy saving for dedusting system in EAF meltshop B-1: Exhaust gas treatment through gas cooling, carbon injection, and bag filter dedusting for EAF B-2: Floating dust control in EAF meltshop B-4: Dioxin adsorption by mixing EAF exhaust gas with building dedusting gas B-5: Dioxin adsorption by 2 step bagfilter technology for EAF exhaust gas B-6: PKS charcoal use for EAF 		
Daido Steel Co., Ltd.	1-10, Higashisakura 1-chome, Higashi-ku, Nagoya, Aichi, 461-8581, Japan <u>TEL:+81-52-963-7501</u> FAX: +81- 52-963-4386 <u>https://www.daido.co.jp/</u>	 A-2: Medium temperature batch scrap preheating EAF A-3: High efficiency oxy-fuel burner/lancing for EAF A-4: Eccentric bottom tapping (EBT) on existing furnace A-5: Ultra high-power transformer for EAF A-6: Optimizing slag foaming in EAF A-8: Operation support system with EAF meltdown judgment A-12: Energy saving for dedusting system in EAF meltshop A-13: Bottom stirring/stirring gas injection A-16: Arc furnace with shell rotation drive B-1: Exhaust gas treatment through gas cooling, carbon injection, and bag filter dedusting for EAF B-2: Floating dust control in EAF meltshop B-4: Dioxin adsorption by mixing EAF exhaust gas with building dedusting gas B-5: Dioxin adsorption by 2 step bagfilter technology for EAF exhaust gas C-1: EAF dust and slag recycling system by oxygen-fuel burner 		
Nikko Industry Co., Ltd.	2-4-10, Nunobiki-cho, Chuo-ku, Kobe-city, Hyogo 651-0097. Japan TEL : +81-78-222-1688 FAX : +81- 78-222-2916 <u>https://www.nikko-</u> japan.co.jp/home_en/ E-mail : <u>nikko@nikko-japan.co.jp</u>	 A-3: High efficiency oxy-fuel burner/lancing for EAF A-4: Eccentric bottom tapping (EBT) on existing furnace A-5: Ultra high-power transformer for EAF A-6: Optimizing slag foaming in EAF A-13: Bottom stirring/stirring gas injection B-1: Exhaust gas treatment through gas cooling, carbon injection, and bag filter dedusting for EAF B-4: Dioxin adsorption by mixing EAF exhaust gas B-5: Dioxin adsorption by 2 step bagfilter technology for EAF exhaust gas 		
Chugai Ro Co., Ltd.	3-6-1 Hiranomachi, Chuo-ku, Osaka 541-0046, Japan TEL: +81-6-6221-1251 FAX: +81- 6-6221-1411 <u>https://chugai.co.jp/en/</u>	 A-9: Low NOx regenerative burner system for ladle preheating A-10: Oxygen burner system for ladle preheating D-1: Process control for reheating furnace D-2: Low NOx regenerative burner total system for reheating furnace D-3: High temperature recuperator for reheating furnace D-4: Fiber block for insulation of reheating furnace D-7: Oxygen enrichment for RHF combustion air E-4: Highly efficient combustion system for radiant tube burner 		
Nippon Furnace Co., Ltd.	2-1-53, Shitte, Tsurumi-ku, Yokohama City, Kanagawa Prefecture, 230-8666 Japan TEL.+81-45-575-8111 FAX.+81- 45-575-8046 http://www.furnace.co.jp/en.html E-mail.webmaster@furnace.co.jp	 A-9: Low NOx regenerative burner system for ladle preheating A-10: Oxygen burner system for ladle preheating D-2: Low NOx regenerative burner total system for reheating furnace D-7: Oxygen enrichment for RHF combustion air 		
Fuji Electric Co., Ltd.	Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan https://www.fujielectric.com/contact/ ?ui_medium=gl_glnavi	 A-5: Ultra high-power transformer for EAF A-12: Energy saving for dedusting system in EAF meltshop A-14: Induction type tundish heater E -1: Inverter (VVVF; Variable Voltage Valuable Frequency) Drive for Motors E-2: Energy monitoring and management systems 		
Fuji Car Manufacturing Co., Ltd.	13-1 Chishiro-cho, Moriyama-city, Shiga, JAPAN 524-0034 TEL +81-77-583-1235 / FAX +81- 77-582-8805	A-15: Scrap pretreatment with scrap shear		

	http://www.fujicar.com/ENG_fujicar/	
JFE Engineering Corporation	2-1,Suehiro-cho,Tsurumi- ku,Yokohama 230-8611, JAPAN http://www.jfe-eng.co.jp/en/	B-3: Dioxin adsorption by activated carbon for EAF exhaust gas
Rozai Kogyo Kaisha Ltd.	2-14, Minamihorie 1-chome, Nishi- ku, Osaka, Japan 550-0015 Phone: +81 6-6534-3609 / Fax: +81 6-6534-3602 http://www.rozai.co.jp/en/company/i ndex.html	 D-1: Process control for reheating furnace D-2: Low NOx regenerative burner total system for reheating furnace D-3: High temperature recuperator for reheating furnace D-4: Fiber block for insulation of reheating furnace D-7: Oxygen enrichment for RHF combustion air
Mitsui E&S Power Systems Inc.	MESPS Tokyo Office: TEL +81-3-6806-1075 FAX +81-3- 5294-1121 https://www.mesps.co.jp/contact/ind ex.html	D-6: Induction type billet heater RHF for direct rolling

ANNEX 1. Expected Effects in Each ASEAN Country

Pre-Conditions for Calculations of Effects

- As the plant costs and energy prices may change country to country, the differences are shown in the list of "Energy price, plant cost, and CO2 emission factor in ASEAN countries".
- Plant cost in each country is calculated by multiplying "plant cost index" to the cost in Japan.
- By using plant costs and energy prices, profit of operation and simple pay-back time are calculated for each ASEAN country in the sheet of "Expected effects in each ASEAN country". This calculation suggests that when energy price is high, energy saving project is profitable even though the plant cost is expensive.
- CO2 emission reduction is also calculated for each country by using emission factor of electricity in each country and the common value of CO2 emission rate from fuel (63.1 kg-CO2/GJ).

Country	Electricity price for industry use ¹⁾ (US\$/kWh)	Fuel gas price for industry use ¹⁾ (US\$/GJ)	Plant cost index ²⁾ (Japan = 100.0)	CO2 emission factor ³⁾ (ton-CO2/MWh)
Thailand	0.111	20.62	81.4	0.548
Indonesia	0.070	9.68	76.1	0.771
Vietnam	0.076	24.98	70.2	0.599
Philippines	0.200	25.89	74.4	0.512
Malaysia	0.077	7.49	77.4	0.670
Singapore	0.130	48.61	97.4	0.486
Japan	0.143	19.11	100.0	0.434 ⁴⁾

Energy price, plant cost, and CO2 emission factor in ASEAN countries

Source 1) JETRO website (2021)

2) 2019PCI_LF_summary.pdf, Japan Machinery Center for Trade and Investment

3) average of combined margin from CDM projects, IGES website (2021.2.23)

4) Tokyo Electric Power Company website (2021)

Expected effects in Thailand, Indonesia and Vietnam

			Thailand				Indonesia				Vietnam					
			Preconditions				Preconditions					Preconditions				
			CO2 emission	factor (ton-CO2/MV	Vh) 1)	0.548	CO2 emission	factor (ton-CO2/MV	Wh) 1)	0.771	CO2 emission	factor (ton-CO2/MV	Vh) 1)	0.599		
		Title of technology	Electricity p	rice (US\$/kWh)	2)	0.111	Electricity p	rice (US\$/kWh)	2)	0.070	Electricity p	rice (US\$/kWh)	2)	0.076		
			Fuel gas price (US\$/GJ) (LPG) 2)		20.62	Fuel gas price (US\$/GJ) (LPG) 2)		PG) 2) Assumed	9.68	Fuel gas prio	ce (US\$/GJ) (LI	PG) 2) Assumed	24.98			
			CO2 reduction	Profit or 3) Operation cost	investment cost 4)	Pay back time	CO2 reduction	Profit or 3) Operation cost	investment cost 4)	Pay back time	CO2 reduction	Profit or 3) Operation cost	investment cost 4)	Pay back time		
			(kg-CO2/ ton-product)	(US\$/ton- product)	(million US\$)	(year)	(kg-CO2/ ton-product)	(US\$/ton- product)	(million US\$)	(year)	(kg-CO2/ ton-product)	(US\$/ton- product)	(million US\$)	(year)		
A. Ene	ergy Saving for Electric Arc Furnace (EAF)															
1	A 1	High temperature continuous	82.20	16.65	30.93	37	115.65	10.50	28.92	5.5	80.85	11.40	26.68	47		
-	71-1	scrap preheating EAF	02.20	10.05	50.75	5.7	115.05	10.50	20.72	5.5	07.05	11.40	20.00	4.7		
2	A-2	scrap preheating EAF	21.92	4.44	8.14	3.7	30.84	2.80	7.61	5.4	23.96	3.04	7.02	4.6		
3	A-3	High efficiency oxy-fuel burner/lancing for EAF	7.84	1.59	1.67	2.1	11.03	1.00	1.56	3.1	8.57	1.09	1.44	2.6		
4	A-4	Eccentric bottom tapping (EBT) on existing furnace	8.22	1.67	3.26	3.9	11.57	1.05	3.04	5.8	8.99	1.14	2.81	4.9		
5	A-5	Ultra high-power transformer	8.22	1.67	4.61	5.5	11.57	1.05	4.31	8.2	8.99	1.14	3.97	7.0		
6	A-6	Optimizing slag foaming in	3.29	0.67	1.22	3.7	4.63	0.42	1.14	5.4	3.59	0.46	1.05	4.6		
7	A-7	EAF Optimized power control for	8.22	1.67	2.04	2.4	11.57	1.05	1.90	3.6	8.99	1.14	1.76	3.1		
8	A 8	EAF Operation support system with	3 20	0.67	0.53	16	1.63	0.42	0.49	2.4	3 50	0.46	0.46	2.0		
0	11-0	EAF meltdown judgment	5.27	0.07	0.55	1.0	4.05	0.42	0.47	2.4	5.57	0.40	0.40	2.0		
9	A-9	system for ladle preheating	12.62	4.12	0.33	0.2	12.62	1.94	0.30	0.3	12.62	5.00	0.28	0.1		
10	A-10	Oxygen burner system for ladle preheating	12.62	4.12	0.24	0.1	12.62	1.94	0.23	0.2	12.62	5.00	0.21	0.1		
11	A-11	Waste heat recovery from EAF	72.34	14.65	48.84	6.7	101.77	9.24	45.66	9.9	79.07	10.03	42.12	8.4		
12	A-12	Energy saving for dedusting system in EAF meltshop	3.29	0.67	0.65	2.0	4.63	0.42	0.61	2.9	3.59	0.46	0.56	2.5		
13	A-13	Bottom stirring/stirring gas injection	9.86	2.00	0.21	0.2	13.88	1.26	0.20	0.3	10.78	1.37	0.18	0.3		
14	A-14	Induction type tundish heater	1.64	0.33	0.81	4.9	2.31	0.21	0.76	7.2	1.80	0.23	0.70	6.2		
15	A-15	Scrap pretreatment with scrap shear	10.96	2.22	3.09	2.8	15.42	1.40	2.89	4.1	11.98	1.52	2.67	3.5		
16	A-16	Arc furnace with shell rotation drive	17.54	2.22	4.88	4.4	24.67	1.40	4.57	6.5	19.17	1.52	4.21	5.5		
B. Environmental Protection for Electric Arc Furnace																
17	B-1	Exhaust gas treatment through gas cooling, carbon injection, and bag filter dedusting for	-	-	-	-	-	-	-	-	-	-	-	-		
18	B-2	Floating dust control in EAF meltshop	-	-	-	-	-	-	-	-	-	-	-	-		
19	B-3	Dioxin adsorption by activated carbon for EAF exhaust gas	-	-	-	-	-	-	-	-	-	-	-	-		
20	B-4	Dioxin adsorption by mixing EAF exhaust gas with building	-	-	-	-	-	-	-	-	-	-	-	-		
21	B-5	dedusting gas Dioxin absorption by 2 step bagfilter technology for EAF	-	-	_	-	-	_	_	_	-	-	-	_		
22	DC	exhaust gas														
22	в-о	PKS charcoal use for EAF	-	-	-	-	-	-	-	-	-	-	-	-		
C. Mat	erial R	ecycle for Electric Arc Furnae	æ													
23	C-1	EAF dust and slag recycling system by oxygen-fuel burner	-	-	-	-	-	-	-	-	-	-	-	-		
24	C-2	EAF slag agglomeration for aggregate use	-	-	-	-	-		-	-	-	-	-	-		
D. Ene	rgy Sav	ing for Reheating Furnace														
25	D-1	Process control for reheating furnace	3.16	1.03	2.04	3.9	3.16	0.48	1.90	7.9	3.16	1.25	1.76	2.8		
26	D-2	total system for reheating furnace	11.93	3.90	6.51	3.3	11.93	1.83	6.09	6.7	11.93	4.72	5.62	2.4		
27	D-3	High temperature recuperator for reheating furnace	6.31	2.06	1.22	1.2	6.31	0.97	1.14	2.4	6.31	2.50	1.05	0.8		
28	D-4	Fiber block for insulation of reheating furnace	2.46	0.80	1.22	3.0	2.46	0.38	1.14	6.0	2.46	0.97	1.05	2.2		
30	D-6	Induction type billet heater for direct rolling	113.42	25.46	0.81	0.1	122.34	11.24	0.76	0.1	115.46	33.18	0.70	0.0		
31	D-7	Oxygen enrichment for combustion air	29.34	2.74	-	-	34.60	0.86	-	-	30.54	4.70	-	-		
E. Con	ımon sy	stems and General Energy Sa	vings									•				
32	E-1	Inverter (VFD; Variable Frequency Drive) drive for motors	-	-	-	-	-	-	-	-	-	-	-	-		
33	E-2	Energy monitoring and management systems	-	-	-	-	-	-	-	-	-	-	-	-		
34	E-3	Management of compressed air delivery pressure optimization	-	-	-	-	-	-	-	-	-	-	-	-		
35	E-4	Highly efficient combustion system for radiant tube burner	5.65	1.85	2.36	2.2	5.65	0.87	2.21	4.3	5.65	2.24	2.04	1.5		

		•		Philipp	ines		Malaysia				Singapore			
			Preconditions				Preconditions				Preconditions			
			CO2 emission factor (ton-CO2/MWh) 1)			0.512	CO2 emission factor (ton-CO2/MWh) 1)		Vh) 1)	0.670	CO2 emission	factor (ton-CO2/MV	Vh) 1)	0.486
	Title of technology		Electricity p	rice (US\$/kWh)	2)	0.200	Electricity p	rice (US\$/kWh)	2)	0.077	Electricity p	rice (US\$/kWh)	2)	0.130
				e (US\$/GJ) (LI	PG) 2) Assumed	25.89	Fuel gas prie	e (US\$/GJ) (LI	PG) 2) Assumed	7.49	Fuel gas prie	ce (US\$/GJ) (LI	PG) 2) Assumed	48.61
			CO2 reduction	Profit or 3) Operation cost	investment cost 4)	Pay back time	CO2 reduction	Profit or 3) Operation cost	investment cost 4)	Pay back time	CO2 reduction	Profit or 3) Operation cost	investment cost 4)	Pay back time
			(kg-CO2/	(US\$/ton-	(million	(year)	(kg-CO2/	(US\$/ton-	(million	(year)	(kg-CO2/	(US\$/ton-	(million	(year)
A. Ene	rgy Savi	ng for Electric Arc Furnace	ton product)	producty	0.00)		ton product)	producty	0.00)		ton product)	product)	0.00)	
(EAF)	A 1	High temperature continuous	76.90	20.00	28.27	1.0	100.50	11.55	20.41	5.1	72.00	10.50	27.01	2.0
1	A-1	scrap preheating EAF	70.80	30.00	20.27	1.9	100.50	11.55	29.41	5.1	72.90	19.30	37.01	5.0
2	A-2	scrap preheating EAF	20.48	8.00	7.44	1.9	26.80	3.08	7.74	5.0	19.44	5.20	9.74	3.7
3	A-3	High efficiency oxy-fuel burner/lancing for EAF	7.32	2.86	1.53	1.1	9.58	1.10	1.59	2.9	6.95	1.86	2.00	2.1
4	A 4	Eccentric bottom tapping	7.68	3.00	2.08	2.0	10.05	1.16	3 10	5.4	7 20	1.95	3 90	4.0
		(EBT) on existing furnace	7.00	5.00	2.90	2.0	10.05	1.10	5.10	5.4	1.27	1.55	5.70	4.0
5	A-5	Ultra high-power transformer for EAF	7.68	3.00	4.21	2.8	10.05	1.16	4.38	7.6	7.29	1.95	5.51	5.7
6	A-6	Optimizing slag foaming in EAF	3.07	1.20	1.12	1.9	4.02	0.46	1.16	5.0	2.92	0.78	1.46	3.7
7	A-7	Optimized power control for	7 68	3.00	1.86	12	10.05	1.16	1 94	3.4	7 29	1.95	2 44	2.5
	,	EAF Operation support system with	1.00	5.00	1.00	1.2	10.05	1.10	1.01	5.1	7.27	1.55	2	2.0
8	A-8	EAF meltdown judgment	3.07	1.20	0.48	0.8	4.02	0.46	0.50	2.2	2.92	0.78	0.63	1.6
9	A-9	Low NOx regenerative burner system for ladle preheating	12.62	5.18	0.30	0.1	12.62	1.50	0.31	0.4	12.62	9.72	0.39	0.1
10	A-10	Oxygen burner system for ladle preheating	12.62	5.18	0.22	0.1	12.62	1.50	0.23	0.3	12.62	9.72	0.29	0.1
11	A 11	Waste heat recovery from	67 58	26.40	11.64	3.4	88.14	10.16	16.11	0.1	64.15	17.16	58 11	6.8
	A-11	EAF Energy saving for dedusting	07.58	20.40	44.04	5.4	00.44	10.10	40.44	9.1	04.15	17.10	58.44	0.8
12	A-12	system in EAF meltshop	3.07	1.20	0.60	1.0	4.02	0.46	0.62	2.7	2.92	0.78	0.78	2.0
13	A-13	Bottom stirring/stirring gas injection	9.22	3.60	0.19	0.1	12.06	1.39	0.20	0.3	8.75	2.34	0.25	0.2
14	A-14	Induction type tundish heater	1.54	0.60	0.74	2.5	2.01	0.23	0.77	6.7	1.46	0.39	0.97	5.0
15	A-15	Scrap pretreatment with scrap shear	10.24	4.00	2.83	1.4	13.40	1.54	2.94	3.8	9.72	2.60	3.70	2.8
16	A-16	Arc furnace with shell rotation	16.38	4.00	4.46	2.2	21.44	1.54	4.64	6.0	15.55	2.60	5.84	4.5
B. Env	ironmer	ntal Protection for Electric										1		
17	R 1	Exhaust gas treatment through												
17	D-1	and bag filter dedusting for	-	-	-	-	-	-	-	-	-	-	-	-
18	B-2	Floating dust control in EAF meltshop	-	-	-	-	-	-	-	-	-	-	-	-
19	B-3	Dioxin adsorption by activated carbon for EAF exhaust gas	-	-	-	-	-	-	-	-	-	-	-	-
20	B-4	EAF exhaust gas with building dedusting gas	-	-	-	-	-	-	-	-	-	-	-	-
21	B-5	Dioxin absorption by 2 step bagfilter technology for EAF exhaust gas	-	-	-	-	-	-	-	-	-	-	-	-
22	B-6	PKS charcoal use for EAF	-	-	-	-	-	-	-	-	-	-	-	-
C. Ma Furna	terial Re	ecycle for Electric Arc												
23	C-1	EAF dust and slag recycling	-	_	_	-	-	_	_	_	-	_	-	-
2.5	0-1	system by oxygen-fuel burner		_	_	_	_	_	_			_		
24	C-2	EAF slag agglomeration for aggregate use	-	-	-	-	-	-	-	-	-	-	-	-
D. Ene	rgy Sav	ing for Reheating Furnace												
25	D-1	Process control for reheating furnace	3.16	1.29	1.86	2.9	3.16	0.37	1.94	10.3	3.16	2.43	2.44	2.0
26	D-2	Low NOx regenerative burner total system for reheating	11.93	4.89	5.95	2.4	11.93	1.42	6.19	8.7	11.93	9.19	7.79	1.7
27	D-3	High temperature recuperator for reheating furnace	6.31	2.59	1.12	0.9	6.31	0.75	1.16	3.1	6.31	4.86	1.46	0.6
28	D-4	Fiber block for insulation of reheating furnace	2.46	1.01	1.12	2.2	2.46	0.29	1.16	7.9	2.46	1.90	1.46	1.5
30	D-6	Induction type billet heater for direct rolling	111.98	29.54	0.74	0.1	118.30	7.78	0.77	0.2	110.94	65.28	0.97	0.03
31	D-7	Oxygen enrichment for combustion air	28.49	2.01	-	-	32.22	0.13	-	-	27.88	9.57	-	-
E. Common systems and General Energy Savings														
32	E-1	Inverter (VFD; Variable Frequency Drive) drive for motors	-	-	-	-	-	-	-	-	-	-	-	-
33	E-2	Energy monitoring and management systems	-	-	-	-	-	-	-	-	-	-	-	-
34	E-3	Management of compressed air delivery pressure optimization	-	-	-	-	-	-	-	-	-	-	-	-
35	E-4	Highly efficient combustion system for radiant tube burner	5.65	2.32	2.16	1.6	5.65	0.67	2.24	5.6	5.65	4.36	2.82	1.1

Expected effects in Philippines, Malaysia and Singapore

Comments

- 1)
- 2)
- Average of combined margin from CDQ projects (source : IGEA website 2016.3) Source : JETRO website " http://www.jetro.go.jp/world/search/cost/ " Operation cost for Environment Protection or Material Recycle is described as minus (-) 3)
- Investent cost is assumed by multipying following factors to the assumed cost in Japan. (source : Japan Machinery Center for 4) Trade and Investment)

Thailand	0.814
Indonesia	0.761
Vietnam	0.702
Philippines	0.744
Malaysia	0.774
Singapore	0.974

- Assumed annual production to calculate pay-back time is 500,000 ton/y (594,000 ton/y for E-4) 5)
- 6) LPG is assumed to calculate CO2 emission from fuel combustion as:
 - 47.3 GJ/ton-LPG & 2,985 kg-CO2/ton-LPG ---> 63.1 kg-CO2/GJ

Technologies Customized List 2022 version Part 1 : EAF (v.3.2)