ASEAN
Technologies
Customized List
2023 version
Part-1: EAF (v.4.0)

Recommended technologies for energysaving, environmental protection and recycling in ASEAN iron and steel industry

### Introduction

### Overview

"Technologies Customized List" is a technology reference containing energy-saving, environmental-protection and recycling technologies, developed under a collaborative scheme of ASEAN-Japan Steel Initiative (AJSI) between ASEAN 7 countries (Indonesia, Malaysia, Philippines, Singapore, Thailand, Vietnam and Myanmar) and Japan. The list is aimed at identifying appropriate technologies for the ASEAN steel industry and the first version of the list was published in November 2014.

The list reflects the knowledge acquired from public and private experiences of the Japanese steel industry, which achieves the highest energy efficiency in the world, and the technology needs of ASEAN steel industry. In this context, contents of the list are informative for public sectors for development of policies and measures, as well as for private sectors for the plan of the technology introduction and improvement of energy management activities in steel plants.

After the publication of the Technologies Customized List Version 1, the list was employed on many occasions such as Steel Plant Diagnosis and Public and Private Collaborative Workshops. Through these activities, additional technology needs were specified. In particular, in response to the growing introduction of BF-BOF type steel plants in ASEAN countries, Technologies Customized List 2023 version is developed as a two-part series. Technologies Customized List v.4.0 Part-1 is for EAF plants, and v.4.1 Part-2 is for BF-BOF plants.

### What is ASEAN-Japan Steel Initiative?

#### AJSI is a public and private partnership program between ASEAN and Japan



- Exchange knowledge and experiences and thereby contribute to the energy saving and environmental protection in ASEAN
- Encourage technology transfer from Japan to ASEAN steel industry



### **Public Sector**

Ministries and governmental institutions related to steel industry and energy saving in ASEAN and Japan

### Private sector

ASEAN Iron and Steel Council(AISC), national association in ASEAN, JISF and the member companies

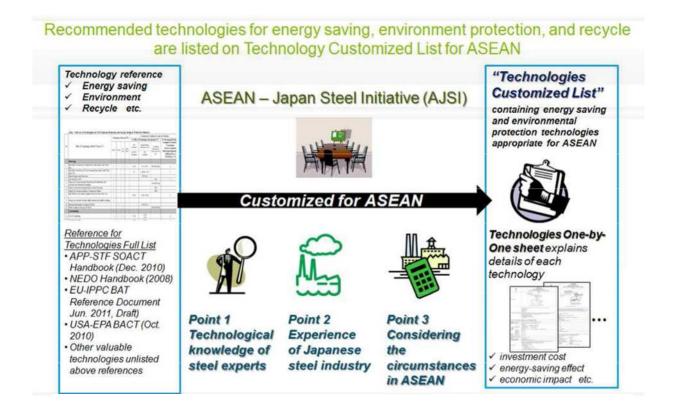


### Steel Plant Diagnosis



### Technologies Customized List




### Public and Private Collaborative Seminar



### **Development process of Technologies Customized List**

Technologies on the Technologies Customized List are considered to contribute to energy saving, environmental protection and recycling in ASEAN steel industry. They were chosen from several technology references\*1 in the world, based on the following criteria.

- Coverage: Technologies Customized List contains the technologies for energy saving, environmental
  protection and recycling in the steel plants in ASEAN region. Technologies for other purposes, such as
  quality improvement and production increase, are not covered in Technologies Customized List.
- Availability: Target technologies should be commercially available. Technologies under development in Japan, which the supplier companies are not ready to diffuse in ASEAN region, are not eligible for Technologies Customized List.
- 3. **Experience**: Steel experts in Japan have technological knowledge and experiences.



2023 version Part-1: EAF (v.4.0)

March, 2023

- The State—of-the-Art Clean Technologies (SOACT) for Steelmaking Handbook
- NEDO Handbook
- EU-IPCC BAT
- USA-EPA-BACT

<sup>\*1</sup> Reference List

## Technologies Customized List & Technologies One by One Sheets 2023 version part-1: EAF (v.4.0)

### **Table of Contents**

| Technologies Customized List                    | 4  |
|-------------------------------------------------|----|
| 2. Technologies One-by-One Sheet                | 8  |
| Contact Points of Suppliers                     | 43 |
| ANNEX 1. Expected effects in each ASEAN country | 45 |

## 1. Technologies Customized List

### **Pre-Conditions for Calculations of Effects**

Capacity and performance of the model steel plant to study costs and effects of energy saving project are assumed as below:

- 1) 100 % scrap use EFA plant to produce mild steel for construction use
- 2) Annual production is 500,000 ton/y with 80 ton EAF
- 3) Unit electricity consumption of EAF is 430 kWh/ton-billet
- 4) Unit thermal consumption of reheating furnace is 1,450 MJ/ton-billet
- 5) The plant possesses conventional facilities, without advanced technologies

### **Equipment List of Model Steel Plant**

| Annual Production                                       |                                                              |                                                                           | 500,000 ton/year 1)                              |
|---------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|
| EAF                                                     |                                                              | RHF                                                                       |                                                  |
| Equipment Name                                          | Value                                                        | Equipment Name                                                            | Value                                            |
| Nominal capacity                                        | 80 ton <sup>2)</sup>                                         | Type                                                                      | Walking beam                                     |
| TTT                                                     | 52 minutes                                                   | Nominal capacity                                                          | 100 ton/h                                        |
| Iron source                                             | 100 % scrap                                                  | Heated material                                                           | 135 SQ billet                                    |
| Scrap preheating                                        | none                                                         | Heating temperature                                                       | 1100 degC                                        |
| Scrap charging                                          | 3 times                                                      | Fuel                                                                      | Natural gas,<br>LHV 44 MJ/m3N                    |
| Ladle furnace                                           | used                                                         | Combustion air preheating                                                 | around 300 degC<br>with low grade<br>recuperator |
| NG burner                                               | used only to facilitate melting                              | Air ratio for combustion                                                  | 1.20 for all zones                               |
| O2 and C lances                                         | installed only at<br>slag-door side,<br>water-cooled<br>type | Computer control to set furnace temperature with heat transfer simulation | none                                             |
| Process control by exhaust gas analysis and/or computer | none                                                         | Hot charge and/or direct rolling                                          | none                                             |
| Electricity consumption                                 | 430 kWh/ton                                                  | Insulation                                                                | firebrick                                        |
| Oxygen consumption                                      | 30 m3N/ton                                                   | Heat consumption                                                          | 1,330<br>MJ/ton-steel                            |
| Natural gas consumption                                 | 20 m3N/ton                                                   |                                                                           |                                                  |
| Coke consumption                                        | 15 kg/ton                                                    |                                                                           |                                                  |
| Product                                                 | Mild steel less<br>than 0.2 % C                              |                                                                           |                                                  |
| Tapping temperature                                     | 1620 degC                                                    |                                                                           |                                                  |
| Atmosphere condition                                    | 25 degC with relati                                          | ve humidity 60 %                                                          |                                                  |

1) The following technologies have different assumptions;

A-11: 1,875,000 ton/year A-14: 576,000 ton/year E-4: 594,000 ton/year

2) The following technology have a different assumption;

A-11: Two 150-ton EAF

### Technologies Customized List for Energy Saving, Environmental Protection, and Recycling for ASEAN Steel Industry 2023 version (v.4.0) part 1: EAF

|     |         |                                                         |                                                                                                                                                                                                                                                                                           |                                       |                                            | Expected o                                       | ffects of introduction                                                  |                                                                                      | Assumed inve                              | stment cost                   |
|-----|---------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------|
| No. | ID      | Title of technology                                     | Technical description                                                                                                                                                                                                                                                                     | Electricity<br>saving<br>(kWh/t<br>of | Thermal<br>energy<br>saving<br>(GJ/t<br>of | Profit of 2) Operation cost  (US\$/t of product, | Environmental benefits                                                  | Co-benefits                                                                          | Assumed investment cost 4)  (million US\$ | Payback time  (year in Japan) |
|     |         |                                                         |                                                                                                                                                                                                                                                                                           | product)                              | product)                                   | Japan)                                           |                                                                         |                                                                                      | in Japan)                                 | (Jean In Jupan)               |
| 1   | nergy S | High temperature continuous scrap preheating EAF        | Combination of the technologies of - Air tight structure - High temperature scrap preheating (over 700 degC) - Continuous preheated scrap charging - Automatic process control by using data logging - Post-combustion of generated CO gas - Dioxin decomposition by secondary combustion | 150.0                                 | -                                          | 21.45                                            | - Decomposition and<br>reduction of dioxin,<br>dispersing dust, & noise | - Low electrode<br>consumption (0.8 - 1.0<br>kg/ton-product at AC)                   | 38.00                                     | 3.5                           |
| 2   | A-2     | Medium temperature batch scrap preheating EAF           | - High melting efficiency batch charging type EAF with SPH Preheated scrap temperature is about 250 - 300 degC Fully enclosed automatic charging system to keep working floor clean Minimize scrap oxidation by temperature controlling - Material limitation free                        | 40.0                                  | -                                          | 5.72                                             | - Reduction of dioxin<br>emission, dispersing<br>dust, & noise          | -No limit of material for<br>high quality products as<br>like stainless steel.       | 10.00                                     | 3.5                           |
| 3   | A-3     | High efficiency oxy-fuel<br>burner/lancing for EAF      | Supersonic or coherent burner     Accelerate scrap melting during melting stage     Facilitate slag foaming during refining stage over the bath                                                                                                                                           | 14.3                                  | -                                          | 2.04                                             | -                                                                       | - Reduction of nitorgen<br>in steel for quality<br>improvement                       | 2.05                                      | 2.0                           |
| 4   | A-4     | Eccentric bottom tapping (EBT) on existing furnace      | - Slag free tapping<br>- Reliable stopping and scraping mechanism                                                                                                                                                                                                                         | 15.0                                  | -                                          | 2.15                                             | -                                                                       | Increase in Fe & alloy<br>yield, productivity     Improve steel quality              | 4.00                                      | 3.7                           |
| 5   | A-5     | Ultra high-power transformer<br>for EAF                 | - Long arc by high voltage and low ampere operation<br>- Water cooled wall-panel to protect refractories                                                                                                                                                                                  | 15.0                                  | -                                          | 2.15                                             | -                                                                       | - Procuctivity increase                                                              | 5.66                                      | 5.3                           |
| 6   | A-6     | Optimizing slag foaming in EAF                          | - Proper chemical ingredients of slag - High efficient burner and/or lance - Controlled O2 & C injection into EAF proper position - Keeping slag thickness with air-tight operation                                                                                                       | 6.0                                   | -                                          | 0.86                                             | - Noise reduction & working floor cleaning                              | -                                                                                    | 1.50                                      | 3.5                           |
| 7   | A-7     | Optimized power control for<br>EAF                      | Data logging and visualization of melting process     Automatic judgement on meltdown and additional scrap charge     Automatic phase power independent control for well-balanced melting                                                                                                 | 15.0                                  | -                                          | 2.15                                             | -                                                                       | - Productivity increase<br>- Manpower saving                                         | 2.50                                      | 2.3                           |
| 8   | A-8     | Operation support system with EAF meltdown judgment     | Automatic Rapid Melting system  - Data logging  - Optimum electric power control  - Alloy calculation  - Automatic meltdown Judgment                                                                                                                                                      | 6.0                                   | -                                          | 0.74                                             | -                                                                       | - Productivity increase<br>- Manpower saving<br>- Operation<br>standardization       | 0.65                                      | 1.5                           |
| 9   | A-9     | Low NOx regenerative burner system for ladle preheating | - Regenerating burner use - High Energy Saving (about 40 %) - Automatic control - FDI Combustion                                                                                                                                                                                          | -                                     | 0.20                                       |                                                  | - NOx reduction                                                         | Contribute to better<br>atmosphere around at<br>workfloor                            | 0.40                                      | 0.2                           |
| 10  | A-10    | Oxygen burner system for ladle preheating               | - Rapid and high temperature ladle heating by oxygen burner<br>- Automatic control<br>- High Energy Saving (about 40 %)                                                                                                                                                                   | -                                     | 0.20                                       |                                                  | - NOx reduction                                                         | Contribute to better<br>atmosphere around at<br>workfloor                            | 0.30                                      | 0.2                           |
| 11  | A-11    | Waste heat recovery from EAF                            | Waste heat boiler based on the OG boiler technology     Specified for splash and dust containing                                                                                                                                                                                          | 132.0                                 | -                                          | 18.88                                            | -                                                                       | -                                                                                    | 60.00                                     | 6.4                           |
| 12  | A-12    | Energy saving for dedusting<br>system in EAF meltshop   | Damper openings and exhaust fan rotation are controlled in consonance     Combination of VVVF and proper damper opening                                                                                                                                                                   | 6.0                                   | -                                          | 0.86                                             | - Better working floor & atmosphere                                     | -                                                                                    | 0.80                                      | 1.9                           |
| 13  | A-13    | Bottom stirring/stirring gas injection                  | - Inject innert gas (Ar or N2) into the bottom of EAF<br>- Better heat transfer steel quality                                                                                                                                                                                             | 18.0                                  | -                                          | 2.57                                             | -                                                                       | - Fe yield increase 0.5                                                              | 0.26                                      | 0.2                           |
| 14  | A-17    | NS-Tundish Plasma Heater<br>(NS-TPH)                    | - Heats molten steel within the tundish by generating a plasma<br>arc between the molten steel and a plasma torch                                                                                                                                                                         | 22.0                                  | -                                          | 3.15                                             | -                                                                       | - Higher productivity<br>- Improvemet of cast<br>quality                             | 3.85                                      | 2.4                           |
| 15  | A-14    | Induction type tundish heater                           | Application of induction heating     Possible to uniformize temperature in 3 minutes after power supply                                                                                                                                                                                   | (compared to<br>plasma heater)        | -                                          | 0.43<br>(compared to<br>plasma heater)           | -                                                                       | -                                                                                    | 1.00                                      | 4.7                           |
| 16  | A-15    | Scrap pretreatment with scrap shear                     | Long size or low bulk-density scrap is shredded and packed.     Scrap pretreatment decreases the scrap-charging frequency, which will lead to energy saving.                                                                                                                              | 20.0                                  | -                                          | 2.86                                             | -                                                                       | Fe yield increase in 1.5<br>% (by Non-integrated<br>steel producer's<br>association) | 3.80                                      | 2.7                           |
| 17  | A-16    | Arc furnace with shell rotation drive                   | By rotating furnace shell 50 degree back-and-force, cold spot will be decreased to realize smooth melting.     Assumed investment cost is the increase from the newly constructed conventional EAF.                                                                                       | 32.0                                  | -                                          | 4.58                                             | -                                                                       | - Decreasing power-on<br>time, melting fuel, and<br>refractory material              | 6.00                                      | 2.6                           |

|      |         |                                                                                                     |                                                                                                                                                                                                                                                                                              |                          |                             | Expected 6                        | effects of introduction                                                         |                                                                     | Assumed inve               | estment cost    |
|------|---------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|-----------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------|-----------------|
| No.  | ID      | Title of technology                                                                                 | Technical description                                                                                                                                                                                                                                                                        | Electricity saving       | Thermal<br>energy<br>saving | Profit of 2)<br>Operation<br>cost | Environmental                                                                   | Co-benefits                                                         | Assumed investment cost 4) | Payback time    |
|      |         |                                                                                                     |                                                                                                                                                                                                                                                                                              | (kWh/t<br>of<br>product) | (GJ/t<br>of<br>product)     | (US\$/t of<br>product,<br>Japan)  | benefits                                                                        | Co-benerits                                                         | (million US\$<br>in Japan) | (year in Japan) |
| B. E | nvironi | nental Protection for Electr                                                                        | ric Arc Furnace                                                                                                                                                                                                                                                                              | (compared to             |                             | (compared to                      | )1                                                                              | T                                                                   | T                          |                 |
| 18   | B-1     | Exhaust gas treatment through<br>gas cooling, carbon injection,<br>and bag filter dedusting for EAF | - Improved design configuration of the direct evacuation for treating hot unburned gas from much fuel use  - Minimize dust and gas dispersion from EAF with enough capacity and suitable control                                                                                             | -                        | -                           | -                                 | - Better workfloor & environment                                                | -                                                                   | -                          |                 |
| 19   | B-2     | Floating dust control in EAF<br>meltshop                                                            | - Analyze air flow in EAF building                                                                                                                                                                                                                                                           | -                        | -                           | -                                 | - Restrict dust loading<br>on working floor to less<br>than 5 mg/m <sup>3</sup> | -                                                                   | 1.00                       |                 |
| 20   | B-3     | Dioxin adsorption by activated carbon for EAF exhaust gas                                           | - Packaged cartridges of activated carbon fixed at the exit of<br>bag-filter adsorbs and removes dioxins and heavy metals to an<br>extremely low levels                                                                                                                                      | -                        | 1                           | -                                 | - Dioxin will be lower<br>than 0.5 ng TEQ/m <sup>3</sup> N                      | -                                                                   | -                          |                 |
| 21   | B-4     | Dioxin adsorption by mixing<br>EAF exhaust gas with building<br>dedusting gas                       | - Cooling direct evacuation gas by mixing with building dedusting gas                                                                                                                                                                                                                        | -                        | -                           | -                                 | - Dioxin will be lower<br>than 5.0 ng TEQ/m <sup>3</sup> N                      | -                                                                   | -                          |                 |
| 22   | B-5     | Dioxin absorption by 2 step<br>bagfilter technology for EAF<br>exhaust gas                          | 2 step bag system can remove over 99% DXN's from EAF.     This system provide a clean working environment.     Effective evacuation decrease the consumption of electricity.                                                                                                                 | -                        | -                           | -                                 | - Dioxin will be lower<br>than 0.5 ng TEQ/m <sup>3</sup> N                      | -                                                                   | -                          |                 |
| 23   | B-6     | PKS charcoal use for EAF                                                                            | - Charcoal made from PKS can be used instead of injected coke into EAF.                                                                                                                                                                                                                      | -                        |                             | -                                 | - 39,000 ton-CO2/y<br>GHG reduction                                             | -                                                                   | -                          |                 |
| C. M | aterial | Recycle for Electric Arc F                                                                          | urnace                                                                                                                                                                                                                                                                                       |                          |                             |                                   |                                                                                 |                                                                     |                            |                 |
| 24   | C-1     | EAF dust and slag recycling<br>system by oxygen-fuel burner                                         | - Zn recovery rate will be expected to be 95%<br>-Remove heavy metals from dust and turn into harmless                                                                                                                                                                                       | -                        | -                           | -                                 | -                                                                               | - Zn material and heavy<br>aggregate can be gained<br>from EAF dust | -                          |                 |
| 25   | C-2     | EAF slag agglomeration for aggregate use                                                            | - Molten slag is rapidly cooled by jet air, and becomes 0.5 - 3.0 mm heavy and strong ball Suited to use aggregate mixed with cement                                                                                                                                                         | -                        | ı                           | i                                 | - Slag satisfies the safety code                                                | - Saved processing time:<br>10 minutes                              | 1.00                       |                 |
| D. E | nergy S | Saving for Reheating Furna                                                                          | ace                                                                                                                                                                                                                                                                                          |                          |                             |                                   | T                                                                               | T                                                                   | T                          |                 |
| 26   | D-1     | Process control for reheating furnace                                                               | - Setting furnace temperature by targeted billet temperature curve - Precise air ratio control and O2 analysis in exhaust gas                                                                                                                                                                | -                        | 0.050                       | 0.96                              | -                                                                               | -                                                                   | 2.50                       | 5.2             |
| 27   | D-2     | Low NOx regenerative burner total system for reheating furnace                                      | - High efficient and durable burner system                                                                                                                                                                                                                                                   | -                        | 0.189                       | 3.61                              | - CO2 & NOx<br>Reduction                                                        | -                                                                   | 8.00                       | 4.4             |
| 28   | D-3     | High temperature recuperator for reheating furnace                                                  | Heat transfer area is expanded     Special material tube is used instead of stainless                                                                                                                                                                                                        | -                        | 0.100                       | 1.91                              | -                                                                               | -                                                                   | 1.50                       | 1.6             |
| 29   | D-4     | Fiber block for insulation of reheating furnace                                                     | - Low thermal conductivity - High temperature change response (low thermal-inertia)                                                                                                                                                                                                          | -                        | 0.039                       | 0.75                              | - Reduction of Heat accumulation                                                | -                                                                   | 1.50                       | 4.0             |
| 30   | D-6     | Induction type billet heater for direct rolling                                                     | Compensate temperature drop of billets transferred from CC to rolling mill (from 950 degC to 1050 degC).  Advantages: - Automatic control - Less exhaust gas (without reheating furnace)                                                                                                     | -40.0                    | 1.45                        | 21.99                             | - Better working floor & atmosphere                                             | -                                                                   | 1.00                       | 0.1             |
| 31   | D-7     | combusiotn air                                                                                      | Thermal energy will be reduced with the decrease in the volume of exhaust gas. Assumed oxygen percentage in combustion air is 39 % in the study. Equipment of oxygen generator is not estimated, it is sometime rental use. Only electric power to generate pxygen is examined (0.5 kWh/m3N) | -23.6                    | 0.26                        | 1.59                              | - Smaller exhaust gas<br>volume from the stack                                  |                                                                     | -                          |                 |
| E. C | ommon   | systems and General Ener                                                                            | gy Savings                                                                                                                                                                                                                                                                                   |                          |                             |                                   |                                                                                 |                                                                     |                            |                 |
| 32   | E-1     | Inverter (VFD; Variable<br>Frequency Drive) drive for<br>motors                                     | Applying the Multi-Level Drive for motors enables to save energy cost from vane and valve control (constant speed motor).  1-Eco-Friendly 1-Dever Source Friendly 1-Less Maintenance 1-Motor Friendly                                                                                        | 13%                      | -                           | -                                 | - CO2 Reduction                                                                 | -                                                                   | 1.50                       |                 |
| 33   | E-2     | Energy monitoring and management systems                                                            | - Energy data are collected in process computer for evaluation                                                                                                                                                                                                                               | -                        | 0.120                       | 2.29                              | -                                                                               | -                                                                   | -                          |                 |
| 34   | E-3     | Management of compressed air delivery pressure optimization                                         | - Energy saving in compressors requires consideration of the following points.  * Selection of the appropriate capacity  * Reduction in delivery pressure                                                                                                                                    | 285<br>MWh/y             | -                           | -                                 | -                                                                               | -                                                                   |                            |                 |
| 35   | E-4     | Highly efficient combustion system for radiant tube burner                                          | Silicon-carbide parts are inserted into the radiant tube to<br>promote heat transfer from hot gas to the tube, which improve<br>thermal efficiency of the furnace. Production of the target plant<br>is assumed as 594,000 ton/y (CGL) with natural gas use.                                 | -                        | 0.0896                      | 1.71                              | - CO2 Reduction                                                                 | -                                                                   | 2.90                       | 2.9             |

3) Operation cost for Environment Protection or Material Recycle is described as minas (-)

4) Assumed investment costs is not guranteed by suppliers, they should be fixed according to local conditions.

# 2. Technologies One by One Sheets

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                           | A. Energy Saving for Electric Arc Furnace (EAF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | High temperature continuous scrap preheating EAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Item                        | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1. Process Flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ow or Diagram               | Building Suction Air  Spray  Over.  800 deg.C  2 Sec.  Post Combustion Spray Cooling Chamber Chamber  DXN, Smoke, Odor Prevent DXN Decomposition  Re-composition  Decomposition  Building Suction Air  ~90 deg.C  Post Combustion  Spray Cooling Chamber  DXN Adheres  to the Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Preheating scraps with high-tempera directly and rigidly connected, so the This enables high-temperature preheating chamber is sealed off frunder high temperature preheating. A significantly improved.  2. Technology  Definition/Specification  Preheating scraps with high-temperature preheating in the melting chamber is sealed off frunder high temperature preheating. A significantly improved.  Furthermore, the electric facilities not even unnecessary depending on requipitorial provides an analysis of the mare also prevented exhaust gas can be used as fuel, reduing the prevented directly and rigidly connected, so the melting chamber is sealed off frunder high temperature preheating. A significantly improved.  Furthermore, the electric facilities not even unnecessary depending on requipitors are decomposed through an system. Not only dioxins but also a valid prevented in the prevented of the prevented exhaust gas can be used as fuel, reduing the prevented in the prevented of the pr |                             | Preheating scraps with high-temperature exhaust gas is possible because the preheating shaft and melting chamber are directly and rigidly connected, so the scraps are continually present, from the steel to preheating areas.  This enables high-temperature preheating of the scraps, resulting in a significant reduction of power consumption.  The melting chamber is sealed off from outside air, to prevent the excess air inlet. It prevents over oxidation of scrap under high temperature preheating. As this equipment keeps always flat bath operation, electrode consumption is significantly improved.  Furthermore, the electric facilities necessary to meet power quality regulation can be drastically reduced on it may not even unnecessary depending on required regulation.  Dioxins are decomposed through an exhaust gas combustion chamber and rapid quench chamber in the exhaust gas duct system. Not only dioxins but also a volatile material that causes foul odors and white smoke will be decomposed and the dispersal of them are also prevented. The furnace prevents diluting of exhaust gasses. Therefore, the CO within the exhaust gas can be used as fuel, reducing the amount of fuel gas consumed. Flat bath operation dramatically reduces noise during operation. The reduction of power consumption also contributes to the reduction of emission of greenhouse gasses during power generation. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •Electricity Saving         | 150 kWh/ton-product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3. Expected<br>Effect of<br>Technology<br>Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • Thermal Energy<br>Savings |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Decomposition of dioxin, reducing dispersing dust, & noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| •Co-benefits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | Low electrode consumption (0.8 - 1.0 kg/ton-product at AC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4. Japanese Main Supplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | JP Steel Plantech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5. Technologic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | es Reference                | SOACT 2nd Edition ("Ecological and Economical Arc Furnace"), Diagram from JP Steel Plantech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6. Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| A-2                                       |                            | A Energy Saying for Electric Are Eymage (EAE)                                                                                                                                                                                                                                                                             |  |  |  |
|-------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                           |                            | A. Energy Saving for Electric Arc Furnace (EAF)  Madium temperature botch gaven probabiling EAF                                                                                                                                                                                                                           |  |  |  |
|                                           |                            | Medium temperature batch scrap preheating EAF                                                                                                                                                                                                                                                                             |  |  |  |
|                                           | Item                       | Content                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 1. Process Flow or Diagram                |                            |                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 2. Technology<br>Definition/Specification |                            | <ul> <li>High melting efficiency batch charging type EAF with SPH.</li> <li>Preheated scrap temperature is about 250 - 300 degC.</li> <li>Fully enclosed automatic charging system to keep working floor clean.</li> <li>Minimize scrap oxidation by temperature controlling</li> <li>Material limitation free</li> </ul> |  |  |  |
|                                           | •Electricity Saving        | 40 kWh/ton-product                                                                                                                                                                                                                                                                                                        |  |  |  |
| 3. Expected<br>Effect of                  | •Thermal Energy<br>Savings | -                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Technology<br>Introduction                | •Environmental             | Reduction of dioxin emission, dispersing dust & noise                                                                                                                                                                                                                                                                     |  |  |  |
|                                           | ı                          |                                                                                                                                                                                                                                                                                                                           |  |  |  |

Co-benefits

Daido Steel

4. Japanese Main Supplier

5. Technologies Reference

6. Comments

No limit of material for high quality products as like stainless steel.

| A 2                                    |                             | A. Energy Saving for Electric Arc Furnace (EAF)                                                                                                                                                                                                              |                                                                                                                                                               |  |  |  |
|----------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| A                                      | <b>1-3</b>                  | High efficiency oxy-fuel burner/lancing for EAF                                                                                                                                                                                                              |                                                                                                                                                               |  |  |  |
|                                        | Item                        | Content                                                                                                                                                                                                                                                      |                                                                                                                                                               |  |  |  |
|                                        |                             | Co Cas Burner Lance  Carbon/Alloy Injection                                                                                                                                                                                                                  | New type of burner has been used to inject carbon and oxygen from side wall and closed slag door.  The buener can realize evenly distributed slag-foaming and |  |  |  |
| 1. Process Flo                         | w or Diagram                | Coherent buner can make long and sharp oxygen jet, which works instead of oxygen lance. Oxygen jet from the center hole is resricted to expand by the combustion around the jet, the combustion is generated by the fuel and oxygen from                     | XSJ.RISS                                                                                                                                                      |  |  |  |
| 2. Technology<br>Definition/Spo        |                             | 'Conventional oxygen lances inserted through slag door causes; - Local oxygen input near the slag door - Uneven slag foaming through the bath - Uneven post-combustion of generated CO - Much hot gas escape caused by the cold air infiltration through the | slag door                                                                                                                                                     |  |  |  |
|                                        | •Electricity Saving         | 14.3 kWh/ton-product                                                                                                                                                                                                                                         |                                                                                                                                                               |  |  |  |
| 3. Expected<br>Effect of<br>Technology | • Thermal Energy<br>Savings | -                                                                                                                                                                                                                                                            |                                                                                                                                                               |  |  |  |
| Introduction                           | •Environmental benefits     | -                                                                                                                                                                                                                                                            |                                                                                                                                                               |  |  |  |
|                                        | •Co-benefits                | Reduction of nitorgen in steel, quality improvement                                                                                                                                                                                                          |                                                                                                                                                               |  |  |  |
| 4. Japanese Main Supplier              |                             | Daido Steel, Nikko, JP Steel Plantech                                                                                                                                                                                                                        |                                                                                                                                                               |  |  |  |
| 5. Technologies Reference              |                             | SOACT 2nd edition (Add the word "High efficiency" to SOACT iter                                                                                                                                                                                              | m for up-to-date oxygen use), Diagram from Nikko                                                                                                              |  |  |  |
| 6. Comments                            |                             | <source "electricity="" of="" saving"=""/> 0.14 GJ/ton in SOACT> 0.14 x 9.8/1000 = 14.3 kWh/ton                                                                                                                                                              |                                                                                                                                                               |  |  |  |

### A. Energy Saving for Electric Arc Furnace (EAF) **Eccentric bottom tapping (EBT) on existing furnace** Content EBT concept and tapping Effect of EBT Effect of EBT 1. Process Flow or Diagram Main factors Effect Category Item Si:15-100%↑ Slag free tapping 1. Yield of Alloys 2. Yield of Fe Fe: 1.1% Slag free tapping, Hot heel 3. Electric power 7 - 25 kWh/t Hot heel consumption . Electrode Hot heel 0.2 - 0.4 kg/t Cost consumption → Decrease of Electric power → High power factor Wall: 23 - 64% - Increase of water cooled area 5. Refractory consumption Ladle: 9 - 54%1 - Slag free tapping 15 - 25%1 Hot heel 6. Lime consumption 1.0 - 3.0 min. Produc-1. Tap-to-On Shortened Hot repair, Shortened Tilting for Tapping, Decrease of tivity 2. On - to - Tap 1.0 - 7.2 min. Electrode con. Quality 1. Dephosphorus 16 - 28%1 Hot heel 2. Inclusion Total [O] 1 - 3ppm Slag free tapping - Molten steel is tapped through the hole at the furnace bottom. '- Tilting angle for tapping is smaller then conventional sput tapping, and quick tappping and returning are possible. 2. Technology '- Tapping hole is plugged with silicon sand after tapping, which is held by stopping mechanism. **Definition/Specification** - Slag free tapping is possible - Reliable stopping and scraping mechanism to avoid leakage •Electricity Saving 15 kWh/ton-product 3. Expected Thermal Energy

Increase in Fe & alloy yield, and productivity

- Values of "Electricity saving" are based on the

EPA-BACT (Sep. 2014), Diagram from JP Steel Plantech

<Pre><Pre>conditions on calculating effects and investment costs>

EPA-BACT (Sep. 2014) & equipment supplier's rough estimation "Profit" does not include such other advantages than electricity saving

JP Steel Plantech, Daido Steel, Nikko

Improve steel quality

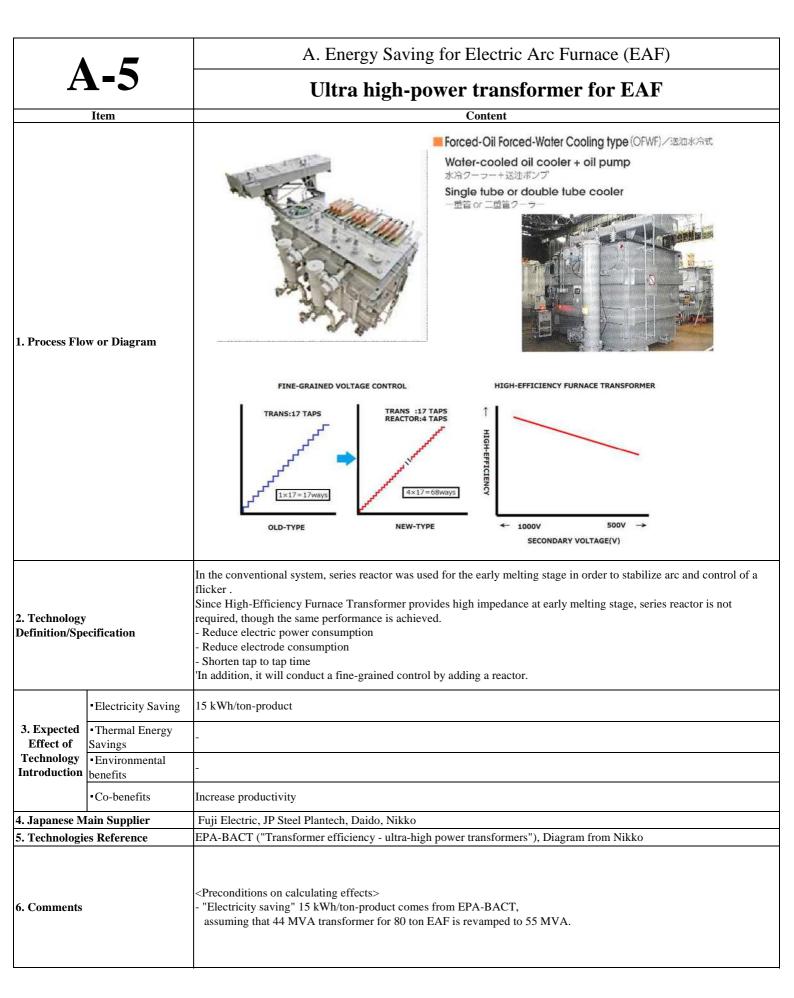
Effect of

Technology

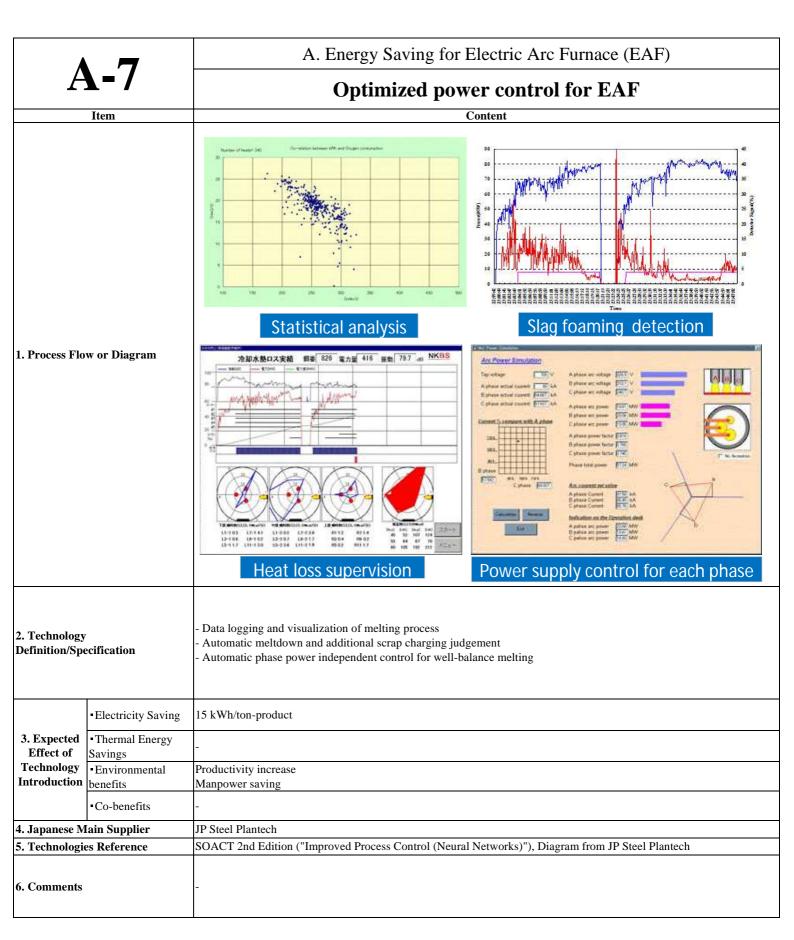
Introduction

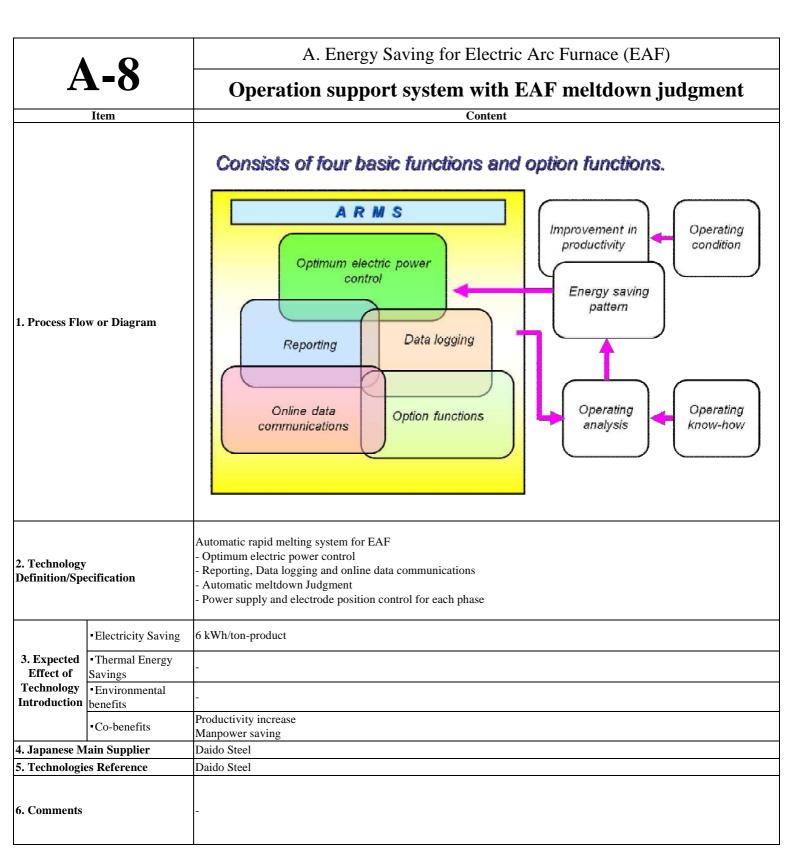
6. Comments

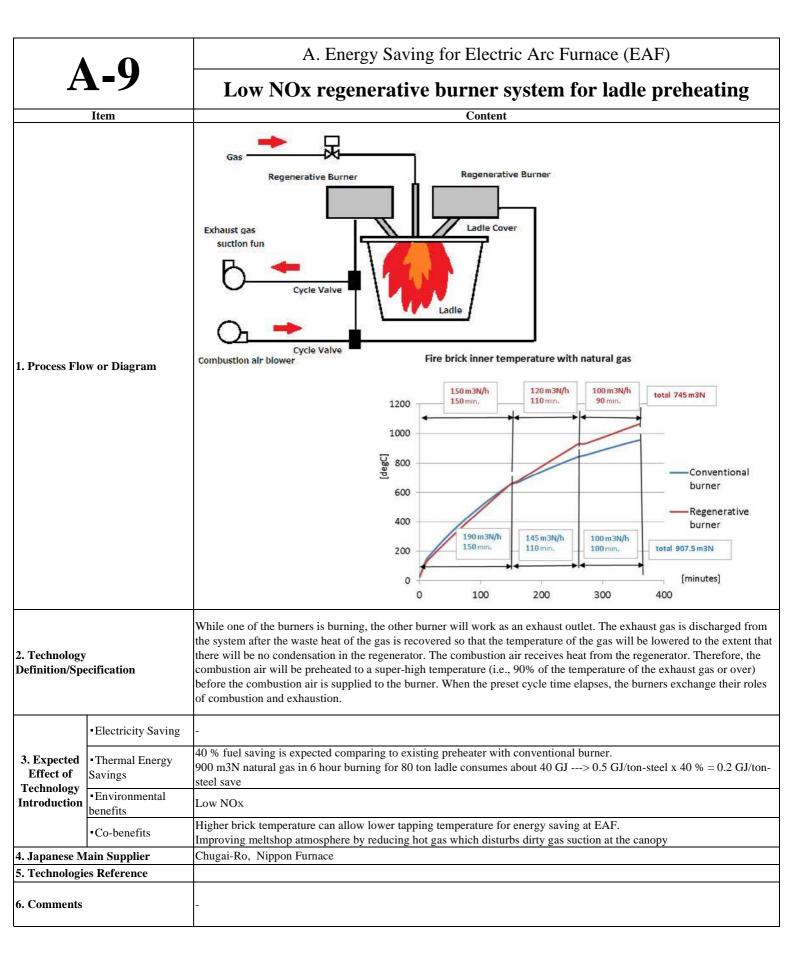
Savings

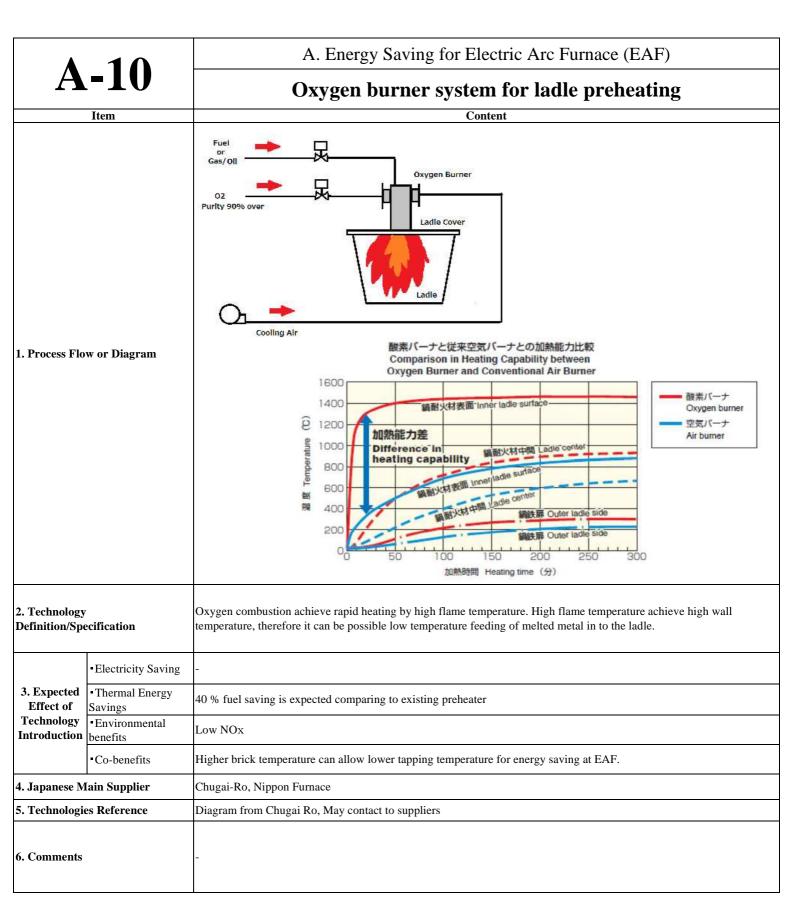

benefits

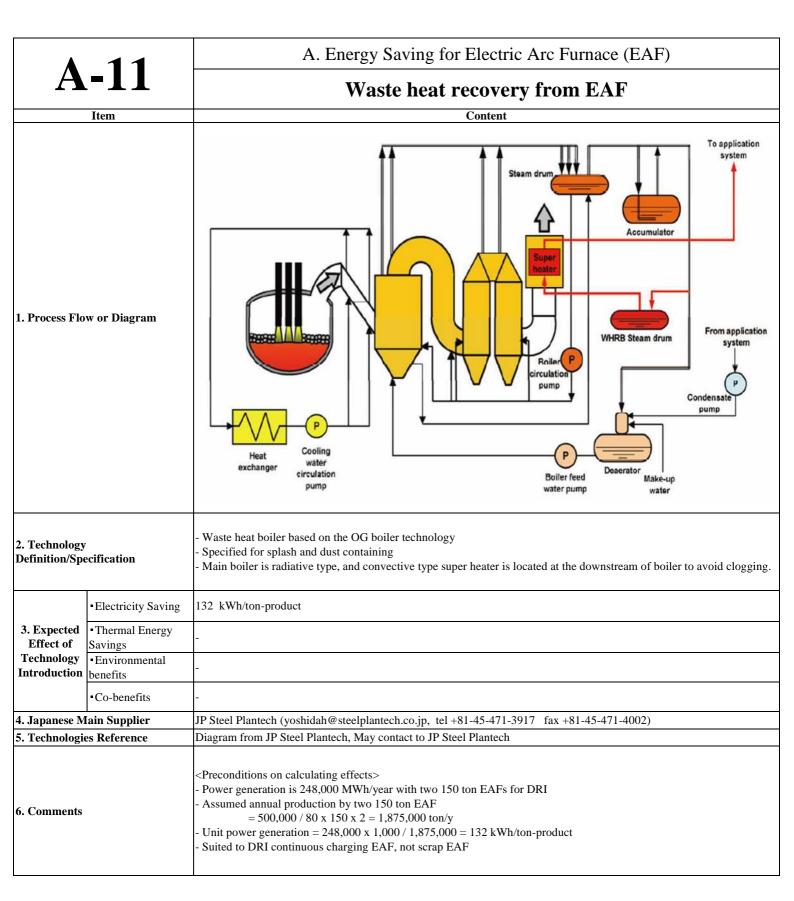
4. Japanese Main Supplier

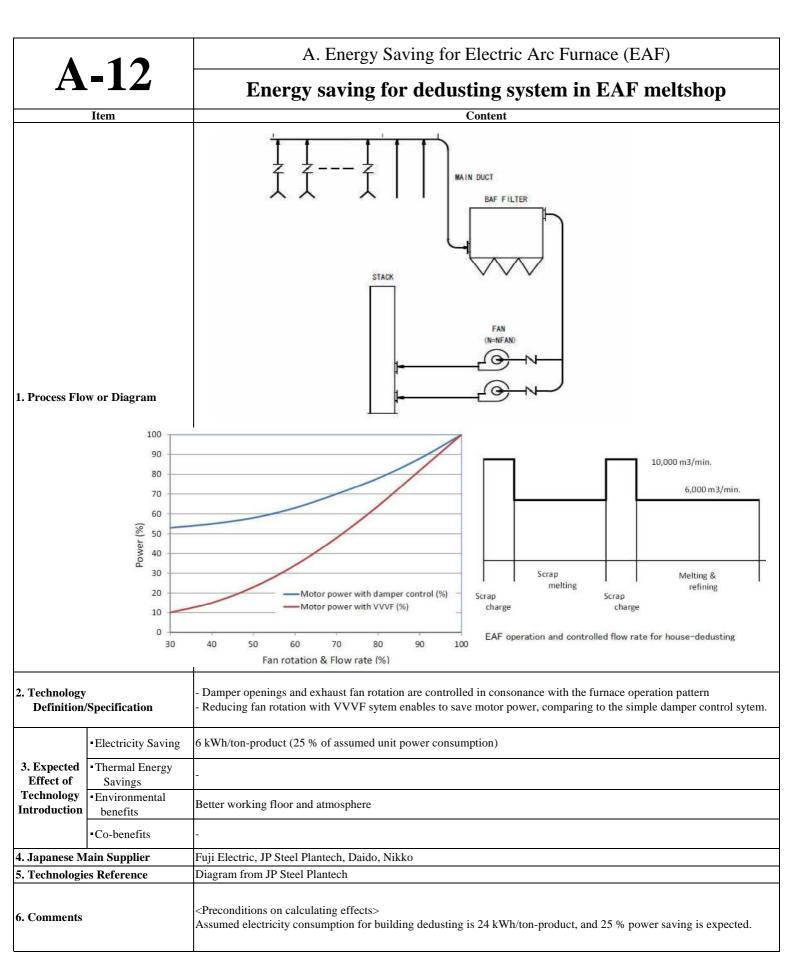

5. Technologies Reference


•Environmental

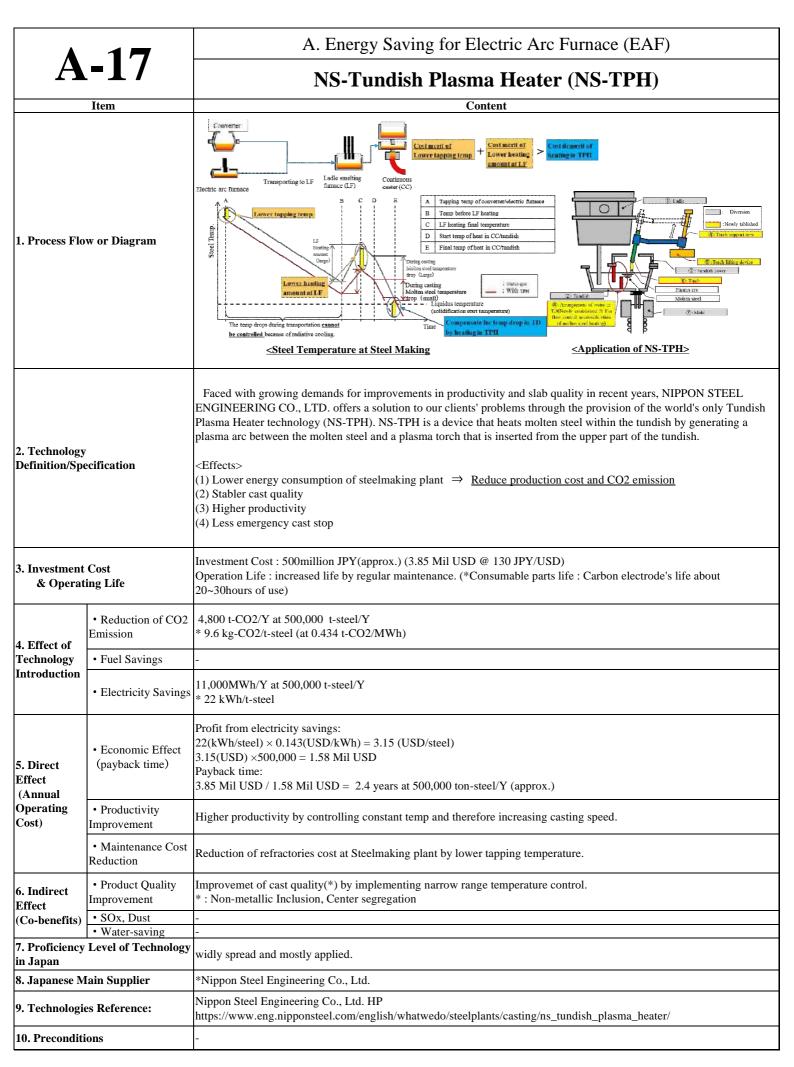

Co-benefits





| A-6                             |                            | A. Energy Saving for Electric Arc Furnace (EAF)  Optimizing slag foaming in EAF                                                                                                                                                                                    |                                                  |  |
|---------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
|                                 |                            |                                                                                                                                                                                                                                                                    |                                                  |  |
|                                 |                            | Inferior slag foaming                                                                                                                                                                                                                                              | Improved slag foaming                            |  |
| 1. Process Flow or Diagram      |                            | Foamy                                                                                                                                                                                                                                                              | c shrouded in "foamy slag" Heat loss → Minimized |  |
| 2. Technology<br>Definition/Spe |                            | <ul> <li>- Proper chemical ingredients of slag (Basicity 1.5 - 2.2, FeO 15</li> <li>- High efficient burner and/or lance</li> <li>- Controlled O2 &amp; C injection into EAF proper position</li> <li>- Keeping slag thickness with air-tight operation</li> </ul> | - 20 %)                                          |  |
|                                 | Electricity Saving         | 6 kWh/ton-product                                                                                                                                                                                                                                                  |                                                  |  |
| 3. Expected<br>Effect of        | •Thermal Energy<br>Savings | -                                                                                                                                                                                                                                                                  |                                                  |  |
| Technology<br>Introduction      | •Environmental             | Noise reduction & working floor cleaning                                                                                                                                                                                                                           |                                                  |  |
|                                 | •Co-benefits               | -                                                                                                                                                                                                                                                                  |                                                  |  |
| 4. Japanese Main Supplier       |                            | JP Steel Plantech, Daido Steel, Nikko                                                                                                                                                                                                                              |                                                  |  |
| 5. Technologies Reference       |                            | SOACT 2nd Edition (Delete the word "Exchangeable Furnace at Plantech                                                                                                                                                                                               | nd Injection Technology"), Diagram from JP Steel |  |
| 6. Comments                     |                            | <source "electricity="" of="" saving"=""/> (1) 2.5 - 3 % energy saving in SOACT> 430 kWh/ton x 0. (2) The phenomenum is explained by several factors, 6 kWh/t                                                                                                      |                                                  |  |





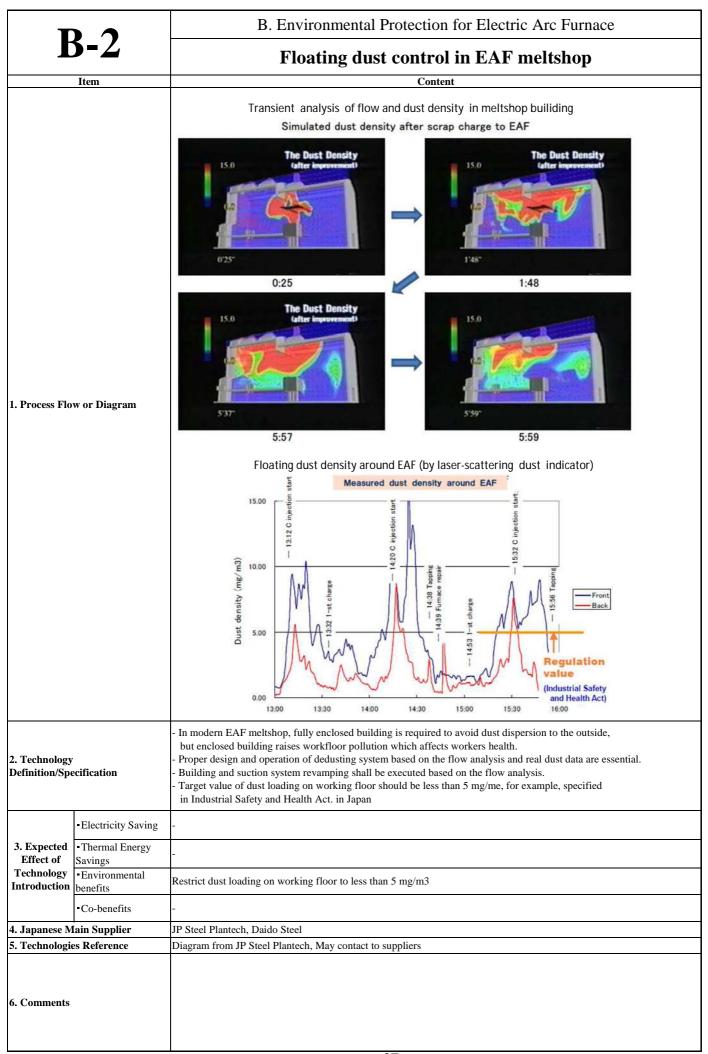





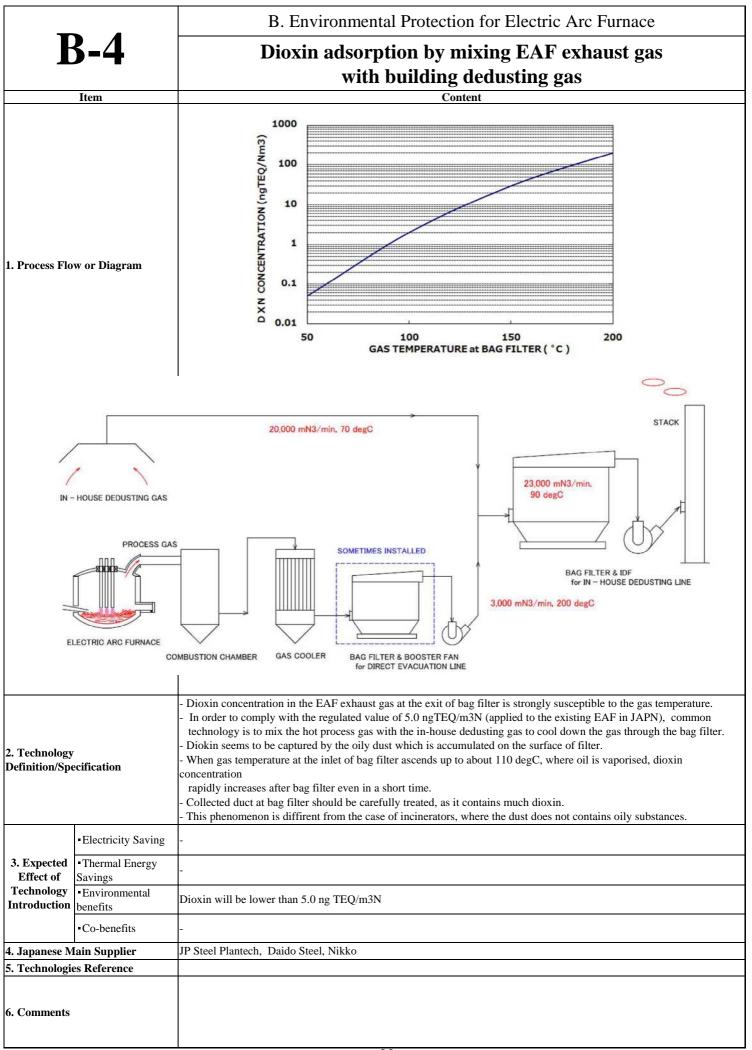





| 1 10                            |                        | A. Energy Saving for Electric Arc Furnace (EAF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                               | -13                    | Bottom stirring/stirring gas injection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1. Process Flow or Diagram      |                        | Content  Ar or N2 TANK  EVAPORATOR  SHUT-OFF VALVE PRESSURE REGULATOR  P  RELIEF VALVE  FLOW METER  FL |
| 2. Technology<br>Definition/Spe |                        | Inject inert gas (Ar or N2) into the bottom of EAF to agitate steel bath  Expected effects: 2)  - homogenize chemical composition and temperature in steel bath  - accelerate chemical reaction between steel and slag  - shorten tap-tap-time  - save electrical energy  - increase yields of iron and alloys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                 | Electricity Saving     | 18 kWh/ton-product 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3. Expected<br>Effect of        | Thermal Energy Savings | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Technology<br>Introduction      | Environmental benefits | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                 | •Co-benefits           | Fe yield increase 0.5 % 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4. Japanese Main Supplier       |                        | Nikko, Daido Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5. Technologies Reference       |                        | EPA-BACT     Bottom-stirring in an electric-arc furnace:Performance results at ISCOR Vereeniging Works     (The Journal of The South African Institute of Mining and Metallurgy, January 1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6. Comments                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



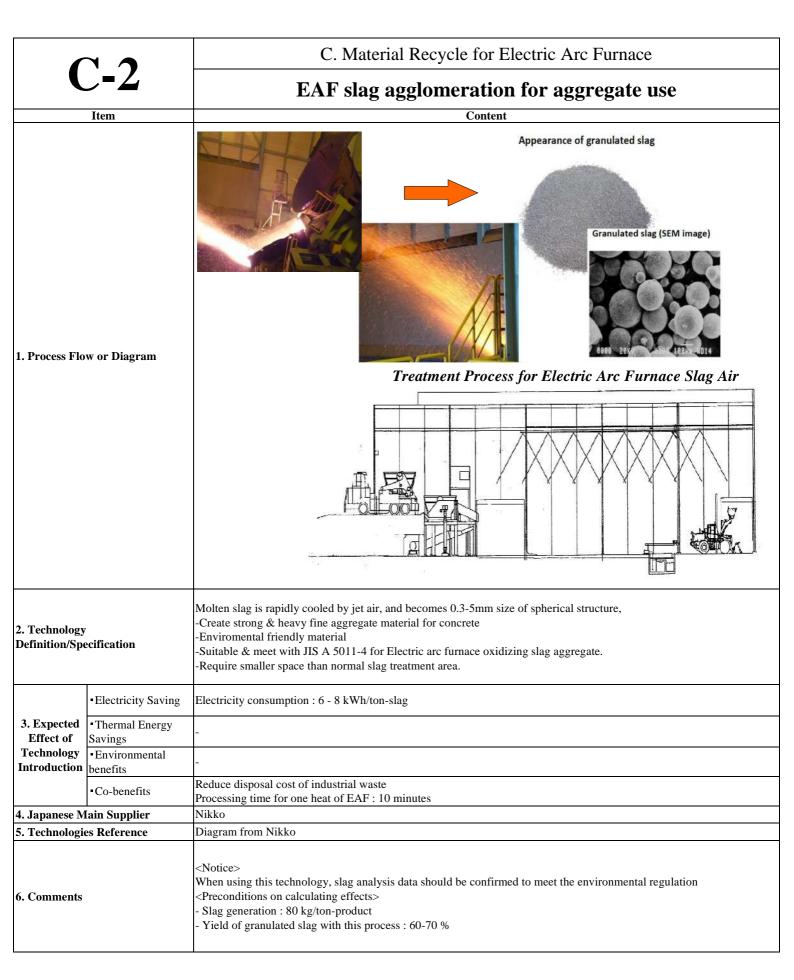

| <b>A</b>                        | 1 /                        | A. Energy Saving for Electric Arc Furnace (EAF)                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|---------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                 | -14                        | Induction type tundish heater                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                 | Item                       | Content                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 1. Process Flow or Diagram      |                            | Peuring Chamber Induction Heater  Secondary current  Magnetic flux  Primary current  Bloom  Molten steel (Secondary conductor)  Secondary current                                                                                                                                                                                                                                                                  |  |  |  |
| 2. Technology<br>Definition/Spo |                            | < Features for Induction Tundish heater > 1.Uniformity of Element of Molten Steel:Agitation effect by electromagnetic force. 2.High Precision Temperature Control:Target Temp.±2.5degree. 3.High Heating Effciency: More than 90% by channel type inductor. 4.Ease of maintennance:Water cooled feeder with quick connector.Self-cooled type Induction coil and so on.                                             |  |  |  |
|                                 | •Electricity Saving        | 3 kWh / ton-product (Effect is calculated comparing to electricity consumption of plasma type heater)                                                                                                                                                                                                                                                                                                              |  |  |  |
| 3. Expected<br>Effect of        | •Thermal Energy<br>Savings | -                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Technology<br>Introduction      | •Environmental benefits    | -                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                 | Co-benefits                | 1.Productivity increase 2.Quality improvement                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 4. Japanese Main Supplier       |                            | Fuji Electric                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 5. Technologies Reference       |                            | Fuji Electric                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 6. Comments                     |                            | <pre><assumed heater="" installed<="" is="" p="" plasma="" tundish="" type=""> Ladle capacity: 200 ton Operated days: 30 days/month Electricity intensity of heater: 13.7 kWh/ton Heat efficiency: 70% Pouring amount: 2.5 ton/min Dissolution time: 80 min/charge Rised temperature: 40 degeree C Number of charges: 8 charges/day Monthly production: 48,000 ton Annual production: 576, 000 ton</assumed></pre> |  |  |  |

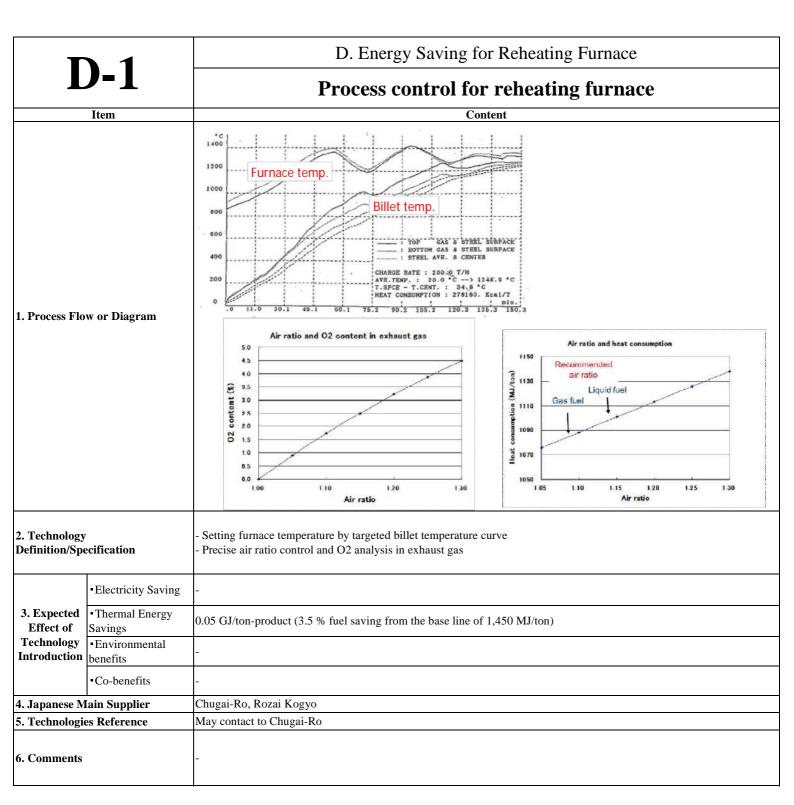

|                                 | 1 =                     | A. Energy Saving for Electric Arc Furnace (EAF)                                                                                                                                                                                                                                                        |  |  |
|---------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                 | -15                     | Scrap pretreatment with scrap shear                                                                                                                                                                                                                                                                    |  |  |
|                                 | Item                    | Content                                                                                                                                                                                                                                                                                                |  |  |
| 1. Process Flow or Diagram      |                         |                                                                                                                                                                                                                                                                                                        |  |  |
| 1. Frocess Fio                  | w of Diagram            |                                                                                                                                                                                                                                                                                                        |  |  |
|                                 |                         | Before scrap pretreatment (0.3 ton/m3)  After scrap pretreatment (0.6                                                                                                                                                                                                                                  |  |  |
| 2. Technology<br>Definition/Spe |                         | <ul> <li>Long size or low bulk-density scrap is shredded and packed.</li> <li>For example, bulk density of 0.3 m3/ton can be decreased to 0.6 with 1250 ton shear x 2 for 80 ton EAF.</li> <li>Scrap pretreatment decreases the scrap-charging frequency, which will lead to energy saving.</li> </ul> |  |  |
|                                 | *Electricity Saving     | 20 kWh/ton-product (reported by Non-integrated steel producer's association of Japan)                                                                                                                                                                                                                  |  |  |
|                                 | •Thermal Energy Savings | -                                                                                                                                                                                                                                                                                                      |  |  |
| Technology<br>Introduction      | •Environmental benefits | -                                                                                                                                                                                                                                                                                                      |  |  |
|                                 | •Co-benefits            | - Fe yield increase in 1.5 %, TTT shortening                                                                                                                                                                                                                                                           |  |  |
| 4. Japanese M                   | Iain Supplier           | Fuji Car Manufacturing                                                                                                                                                                                                                                                                                 |  |  |
| 5. Technologic                  | es Reference            |                                                                                                                                                                                                                                                                                                        |  |  |
| 6. Comments                     |                         |                                                                                                                                                                                                                                                                                                        |  |  |

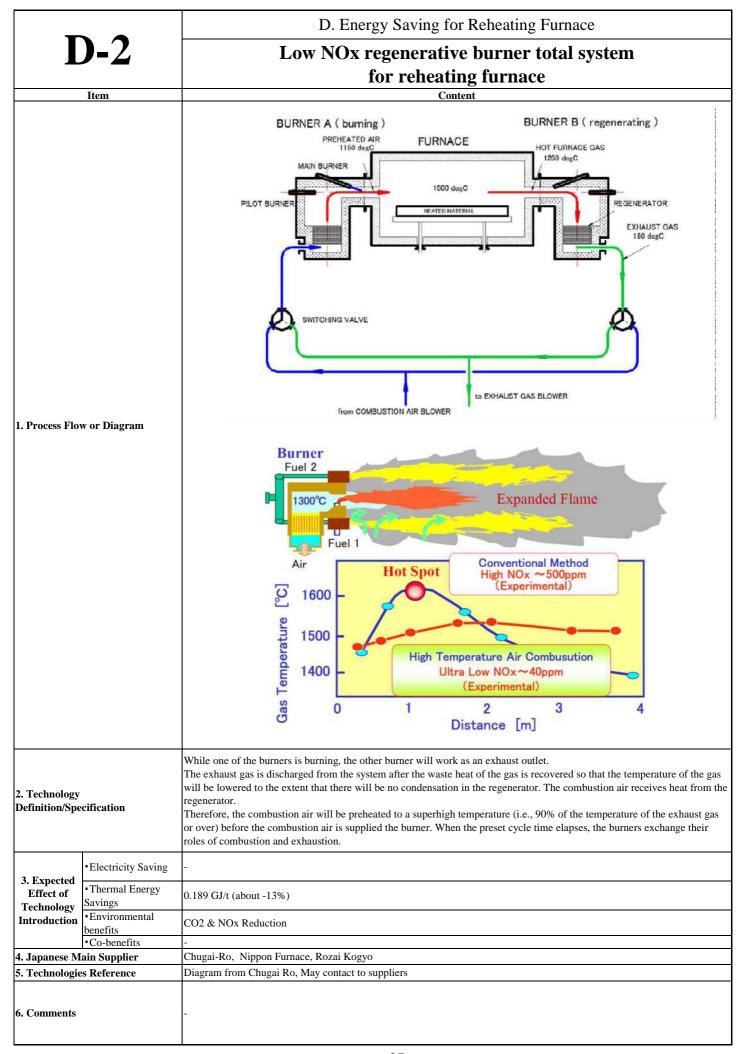
| A-16                            |                            | A. Energy Saving for Electric Arc Furnace (EAF)                                                                                                                                                                                                          |  |
|---------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                 |                            | Arc furnace with shell rotation drive                                                                                                                                                                                                                    |  |
|                                 | Item                       | Content                                                                                                                                                                                                                                                  |  |
| 1. Process Flow or Diagram      |                            | Rotation Device  Melting Rotation  Output  Melting Rotation                                                                                                                                                                                              |  |
|                                 |                            | Scrap Charging Finish Melting                                                                                                                                                                                                                            |  |
| 2. Technology<br>Definition/Spo |                            | Furnace shell is rotated 50 dgree back-and-force Uniform scrap melting with furnace shell rotation - Shortening power-on time - Reduction in cooling water energy loss - Reduction in scrap cutting oxygen - Reduction in refractory repairing materials |  |
|                                 | Electricity Saving         | 32 kWh/ton-product                                                                                                                                                                                                                                       |  |
| 3. Expected<br>Effect of        | •Thermal Energy<br>Savings | -                                                                                                                                                                                                                                                        |  |
| Technology<br>Introduction      | •Environmental benefits    | -                                                                                                                                                                                                                                                        |  |
|                                 | •Co-benefits               | - No limit of material for high quality products - Reduction of refractory consumption                                                                                                                                                                   |  |
| 4. Japanese M                   | lain Supplier              | Daido Steel                                                                                                                                                                                                                                              |  |
| 5. Technologi                   |                            |                                                                                                                                                                                                                                                          |  |
| 6. Comments                     |                            |                                                                                                                                                                                                                                                          |  |

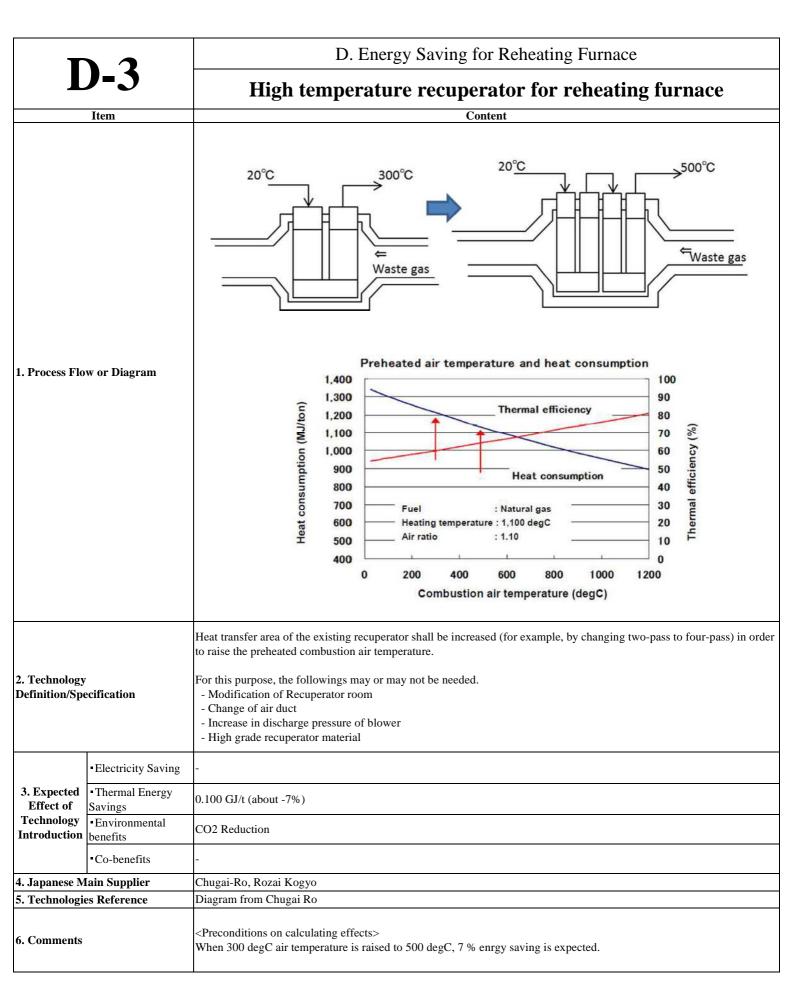
|                                                     |                                              | B. Environmental Protection for Electric Arc Furnace                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F                                                   | <b>3-1</b>                                   | Exhaust gas treatment through gas cooling, carbon injection, and bag filter dedusting for EAF                                                                                                                                                                                                                                                                                     |
|                                                     | Item                                         | Content                                                                                                                                                                                                                                                                                                                                                                           |
| 1. Process Flo                                      | w or Diagram                                 |                                                                                                                                                                                                                                                                                                                                                                                   |
| 2. Technology<br>Definition/Spe                     |                                              | <ul> <li>Improved design configuration of the direct evacuation for treating hot unburned gas from much fuel use</li> <li>Minimize dust and gas dispersion from EAF with enough capacity and suitable control</li> <li>Much fossil fuel use becomes possible to save electricity.</li> </ul>                                                                                      |
| 3. Expected<br>Effect of<br>Technology              | •Electricity Saving                          | <ul> <li>When capacity increase is applied to the standard size EAF (30 m3N-O2/ton-steel, 20 m3N-natural gas/ton-steel, and 15 kg-carbon/ton-steel), expected electrical energy saving becomes as:</li> <li>4 - 5 kWh/m3N-O2</li> <li>8 - 9 kWh/m3N-natural gas</li> <li>8 - 9 kWh/kg-carbon</li> <li>Decrease in yield is assumed as 1 - 2 % per 10 m3N-O2/ton-steel.</li> </ul> |
| Introduction                                        | •Thermal Energy<br>Savings<br>•Environmental | -                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | benefits                                     | Better workfloor environment                                                                                                                                                                                                                                                                                                                                                      |
| 4 1                                                 | Co-benefits                                  | ID Steel Blantock, Daide Steel, Nilder                                                                                                                                                                                                                                                                                                                                            |
| 4. Japanese Main Supplier 5. Technologies Reference |                                              | JP Steel Plantech, Daido Steel, Nikko  SOACT 2nd Edition  Recent Progress of Steelmaking Technologiy in Electric Arc Furnace (1993, JISF)                                                                                                                                                                                                                                         |
| 6. Comments                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                   |

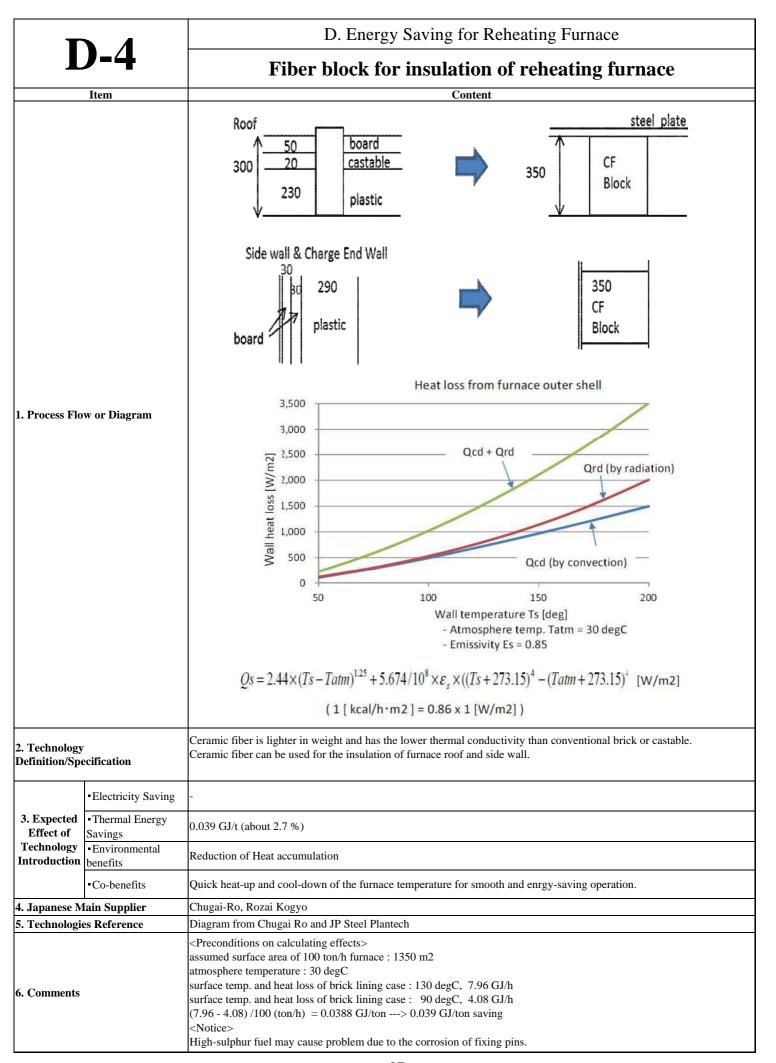



| B-3                                       |                            | B. Environmental Protection for Electric Arc Furnace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           |                            | Dioxin adsorption by activated carbon for EAF exhaust gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Item                                      |                            | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1. Process Flo                            | w or Diagram               | Gas Clean Conbined Bag Filter  Bag Filter  Activated Carbon  Blower  Blower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2. Technology<br>Definition/Specification |                            | A new dioxin-removal system passes exhaust gas through a layer of granular activated carbon with outstanding adsorption performance. High-performance activated carbon was developed exclusively for the system. Packaged cartridges with a unique structure allowing the system to adsorb and remove dioxins and heavy metals to an extremely low levels. A cartridge with a unique structure ensures improved contact efficiency between activated carbon and exhaust gas. Consequently, the filled quantity of activated carbon is considerably reduced allowing unparalleled compact size. In addition, amount of consumed activated carbon would be substantially reduced comparing to previous Activated Carbon Adsorption Tower. Furthermore, it would save electricity consumption of blower since its pressure loss would be lower than 0.5kPa (Approx. 50 mmAq) per a cartridge comparing to previous equipment. |
|                                           | •Electricity Saving        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3. Expected<br>Effect of                  | •Thermal Energy<br>Savings | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Technology<br>Introduction                | •Environmental             | Dioxin will be lower than 0.1 ng TEQ/m3N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                           | •Co-benefits               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4. Japanese M                             |                            | JFE Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5. Technologies Reference                 |                            | Diagram from JFE Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6. Comments                               |                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |





### B. Environmental Protection for Electric Arc Furnace **B-5** Dioxin adsorption by 2 step bagfilter technology for EAF exhaust gas 1. Process Flow or Diagram 20,000 mN3/min. 70 degC ACTIVATED CARBON 2-5 kg/h (approx, 100 - 250 mg/m3N) 23,000 mN3/min. 90 degC IN - HOUSE DEDUSTING GAS PROCESS GAS **BAG FILTER & IDF** for IN - HOUSE DEDUSTING LINE 3,000 mN3/min. 200 degC ELECTRIC ARC FURNACE COMBUSTION CHAMBER BAG FILTER & BOOSTER FAN for DIRECT EVACUATION LINE In order to comply with the more stringent regulation of 0.5 ngTEQ/m3N (applied to the new EAF in JAPN), two-step bag filter system is applied with the careful temperature control. When 0.1 ngTEQ/m3N is requested from the authorities, for the cases of installation at dense-population are or industrial wastes treatment, activated carbon injection into the exhaust gas line is effective. 2. Technology **Definition/Specification** - Dust loading in the process gas is much higher than that of in-house dedusting gas, therefore, activated carbon is injected into the gas which is dedusted with the primary bag filter. This activated carbon powder is accumulated on the filters of secondary bag filter and adsorbs dioxin. • Electricity Saving 3. Expected Thermal Energy Effect of Savings Technology • Environmental Dioxin will be lower than 0.5 ng TEQ/m3N **Introduction** | benefits Co-benefits 4. Japanese Main Supplier JP Steel Plantech, Daido Steel, Nikko 5. Technologies Reference Diagram from JP Steel Plantech 6. Comments


|                                        |                            | B. Environmental Protection for Electric Arc Furnace                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>B-6</b>                             | PKS charcoal use for EAF   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        | Item                       | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. Process Flo                         | w or Diagram               | Palm kernel shell char coal: coarse size particle                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2. Technology Definition/Specification |                            | - Charcoal made from PKS (Palm Kernel Shell) has similar quality with coke commonly used for carbon injection into EAF - Higher heating value, lower sulfur content than fossil fuel coke - CO2 generated from charcoal is not counted as GHG (Green House Gas) - PKS charcoal is produced for the production of activated carbon in a small scale - Equipmet is very simple and can be constructed by local technology - Japanese supplier will provide with know-how |
|                                        | Electricity Saving         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                        | •Thermal Energy<br>Savings | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                        | •Environmental benefits    | 39,000 ton-CO2/y GHG reduction from 500,000 ton/y EAF plant                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | •Co-benefits               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4. Japanese M                          | Iain Supplier              | JP Steel Plantech                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5. Technologic                         | es Reference               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6. Comments                            |                            | <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>                                                                                                                                                                                                                                                                                                                                                                               |

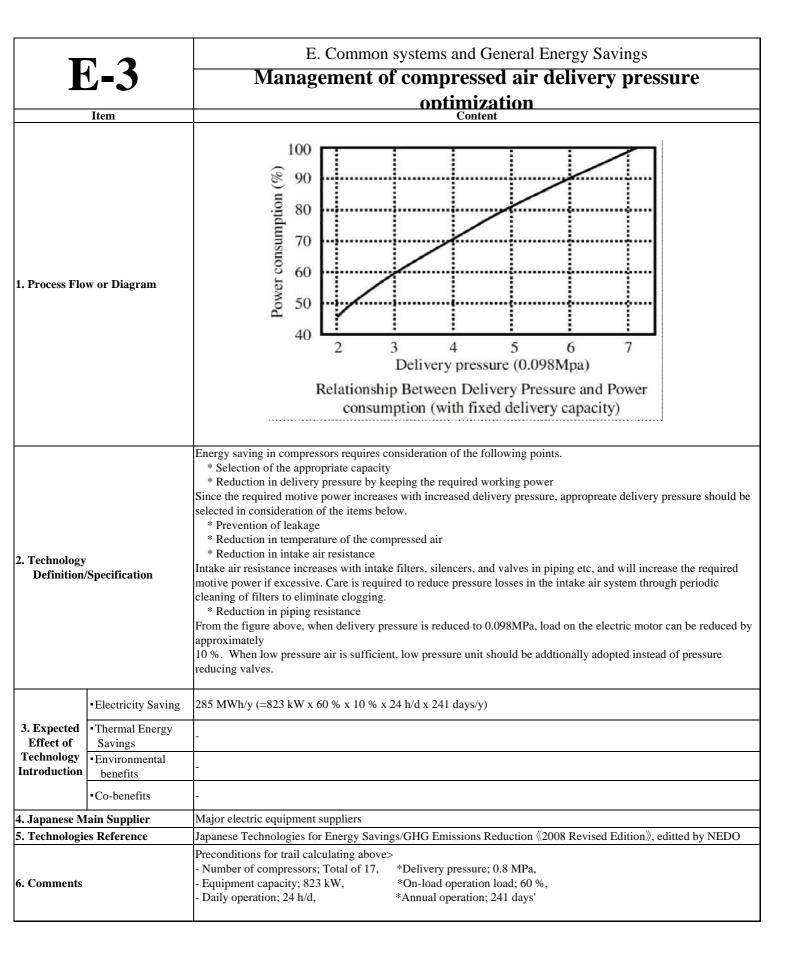

|                                                                             | 7 1                                                                                                 | C. Material Recycle for Electric Arc Furnace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>C-1</b>                                                                  |                                                                                                     | EAF dust and slag recycling system by oxygen-fuel burner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             | Item                                                                                                | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. Process Flo                                                              | w or Diagram                                                                                        | 題は Haory O )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2. Technology<br>Definition/Spe                                             | ecification                                                                                         | As dust and slag are melted down completely at high temperature, it is very effective against dioxin.  Produced valuable substances are completely harmless and can meet all environmental standards.  More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatments. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.  Also this system can recover expected 95% Zn from EAF dust as Zn law material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                             | •Electricity Saving                                                                                 | Produced valuable substances are completely harmless and can meet all environmental standards.  More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatments. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                             | ecification                                                                                         | Produced valuable substances are completely harmless and can meet all environmental standards.  More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatments. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Definition/Spe                                                              | •Electricity Saving •Thermal Energy                                                                 | Produced valuable substances are completely harmless and can meet all environmental standards.  More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatments. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.  Also this system can recover expected 95% Zn from EAF dust as Zn law material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Definition/Spe                                                              | •Electricity Saving •Thermal Energy Savings                                                         | Produced valuable substances are completely harmless and can meet all environmental standards.  More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatments. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Definition/Spe<br>3. Expected<br>Effect of                                  | •Electricity Saving •Thermal Energy                                                                 | Produced valuable substances are completely harmless and can meet all environmental standards.  More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatments. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.  Also this system can recover expected 95% Zn from EAF dust as Zn law material.  Example of the Leaching test result of Aggregate (Notice 46 by ME, Japan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3. Expected Effect of Technology                                            | •Electricity Saving •Thermal Energy Savings •Environmental                                          | Produced valuable substances are completely harmless and can meet all environmental standards.  More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatments. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.  Also this system can recover expected 95% Zn from EAF dust as Zn law material.  Example of the Leaching test result of Aggregate (Notice 46 by ME, Japan)  mg/l Pb Cd Cr <sup>+6</sup> As Hg Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. Expected Effect of Technology                                            | •Electricity Saving •Thermal Energy Savings •Environmental benefits                                 | Produced valuable substances are completely harmless and can meet all environmental standards.  More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatments. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.  Also this system can recover expected 95% Zn from EAF dust as Zn law material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3. Expected Effect of Technology Introduction                               | •Electricity Saving •Thermal Energy Savings •Environmental benefits                                 | Produced valuable substances are completely harmless and can meet all environmental standards.  More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatments. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.  Also this system can recover expected 95% Zn from EAF dust as Zn law material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3. Expected Effect of Technology Introduction 4. Japanese M                 | • Electricity Saving • Thermal Energy Savings • Environmental benefits • Co-benefits  Eain Supplier | Produced valuable substances are completely harmless and can meet all environmental standards.  More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatments. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.  Also this system can recover expected 95% Zn from EAF dust as Zn law material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3. Expected Effect of Technology Introduction  4. Japanese M                | • Electricity Saving • Thermal Energy Savings • Environmental benefits • Co-benefits  Eain Supplier | Produced valuable substances are completely harmless and can meet all environmental standards.  More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatments. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.  Also this system can recover expected 95% Zn from EAF dust as Zn law material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3. Expected Effect of Technology Introduction  4. Japanese M                | • Electricity Saving • Thermal Energy Savings • Environmental benefits • Co-benefits  Eain Supplier | Produced valuable substances are completely harmless and can meet all environmental standards.  More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatments. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.  Also this system can recover expected 95% Zn from EAF dust as Zn law material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3. Expected Effect of Technology Introduction 4. Japanese M                 | • Electricity Saving • Thermal Energy Savings • Environmental benefits • Co-benefits  Eain Supplier | Produced valuable substances are completely harmless and can meet all environmental standards. More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatment. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.  Also this system can recover expected 95% Zn from EAF dust as Zn law material.  -   Example of the Leaching test result of Aggregate (Notice 46 by ME, Japan)  mg/l Pb Cd Cr <sup>+6</sup> As Hg Se  Aggregate <0.006 <0.001 <0.005 <0.005 <0.0005 <0.0004  Regulation 0.01 0.01 0.05 0.01 0.0005 0.01  Zn material can be gained from EAF dust  Heavy aggregate can be gained from EAF dust  Daido Steel  Diagram from Daido Steel, May contact to Daido Steel  Example of the chemical composition of raw material  (wt%) T-Fe CaO SiO <sub>2</sub> Zn Pb Cl F  Zn raw material 6.5 2.5 0.9 52.3 8.5 7.7 1.4                                                                                   |
| 3. Expected Effect of Technology Introduction 4. Japanese M 5. Technologic  | • Electricity Saving • Thermal Energy Savings • Environmental benefits • Co-benefits  Eain Supplier | Produced valuable substances are completely harmless and can meet all environmental standards.  More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatment. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.  Also this system can recover expected 95% Zn from EAF dust as Zn law material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3. Expected Effect of Technology Introduction  4. Japanese M 5. Technologic | • Electricity Saving • Thermal Energy Savings • Environmental benefits • Co-benefits  Eain Supplier | Produced valuable substances are completely harmless and can meet all environmental standards. More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatments. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.  Also this system can recover expected 95% Zn from EAF dust as Zn law material.  -   Example of the Leaching test result of Aggregate (Notice 46 by ME, Japan)  mg/l Pb Cd Cr+6 As Hg Se  Aggregate <0.006 <0.001 <0.005 <0.005 <0.0005 <0.0005 <0.004  Regulation 0.01 0.01 0.01 0.05 0.01 0.0005 0.01  Zn material can be gained from EAF dust  Heavy aggregate can be gained from EAF dust  Daido Steel  Diagram from Daido Steel, May contact to Daido Steel  Example of the chemical composition of raw material  (wt%) T-Fe CaO SiO2 Zn Pb Cl F  Zn raw material 6.5 2.5 0.9 52.3 8.5 7.7 1.4  Aggregate 40.1 17.8 10.2 2.1 <0.01 0.4 0.3                                                  |
| 3. Expected Effect of Technology                                            | • Electricity Saving • Thermal Energy Savings • Environmental benefits • Co-benefits  Eain Supplier | Produced valuable substances are completely harmless and can meet all environmental standards. More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatment. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.  Also this system can recover expected 95% Zn from EAF dust as Zn law material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3. Expected Effect of Technology Introduction 4. Japanese M 5. Technologic  | • Electricity Saving • Thermal Energy Savings • Environmental benefits • Co-benefits  Eain Supplier | Produced valuable substances are completely harmless and can meet all environmental standards. More than 99% of dioxin can be removed by high temperature treatment in the furnace and strong rapid cooling mechanism.  Besides electrical furnace dust and reduced slag, it is expected that this system will be applied to other waste treatments. The equipment is simple and compact because of unnecessary pretreatment such as dust granulation and so forth. Through simple design, excels in operability and suitable for on-site processing.  Also this system can recover expected 95% Zn from EAF dust as Zn law material.  -   Example of the Leaching test result of Aggregate (Notice 46 by ME, Japan)  mg/l Pb Cd Cr+6 As Hg Se  Aggregate <0.006 <0.001 <0.005 <0.005 <0.005 <0.0005 <0.004  Regulation 0.01 0.01 0.01 0.05 0.01 0.0005 0.01  Zn material can be gained from EAF dust  Heavy aggregate can be gained from EAF dust  Daido Steel  Diagram from Daido Steel, May contact to Daido Steel  Example of the chemical composition of raw material  (wt%) T-Fe CaO SiO <sub>2</sub> Zn Pb Cl F  Zn raw material 6.5 2.5 0.9 52.3 8.5 7.7 1.4  Aggregate 40.1 17.8 10.2 2.1 <0.01 0.4 0.3  -  Expected consumption per EAF dust |










| T                                      | ) 6                     | D. Energy Saving for Reheating Furnace                                       |                                                          |                  |                    |                     |                   |                                          |  |  |  |
|----------------------------------------|-------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|------------------|--------------------|---------------------|-------------------|------------------------------------------|--|--|--|
| L                                      | <b>)-6</b> Item         | -                                                                            | Induction type billet heater for direct rolling  Content |                  |                    |                     |                   |                                          |  |  |  |
| 1. Process Flow or Diagram             |                         | 1300<br>1200<br>(C)<br>1100<br>1000<br>900<br>800<br>700                     | 0                                                        | Induce 5         | tion coil  Heating | g Curve  15 ne(s)   | Hot bil           | llet  - Center of Side - Corner - Center |  |  |  |
| 2. Technology<br>Definition            | Specification           | Compensate tempe<br>Advantages:<br>- Automatic control<br>- Less exhaust gas | 1                                                        |                  |                    | to rolling mill (fr | om 950 degC to 10 | 050 degC).                               |  |  |  |
|                                        | Electricity Saving      | 40 kWh/ton-produ                                                             | ct increase (e                                           | electrical energ | y for billet heat  | ting)               |                   |                                          |  |  |  |
| 3. Expected<br>Effect of               | Thermal Energy Savings  | 1.45 GJ/ton-produc                                                           | ct (Cold char                                            | rge to reheating | furnace is repl    | laced.)             |                   |                                          |  |  |  |
| Technology<br>Introduction             | •Environmental benefits | Better working floo                                                          | or and atmosp                                            | phere            |                    |                     |                   |                                          |  |  |  |
|                                        | •Co-benefits            | -                                                                            |                                                          |                  |                    |                     |                   |                                          |  |  |  |
| 4. Japanese M                          |                         | Mitsui E&S Power                                                             | Systems Inc.                                             |                  |                    |                     |                   |                                          |  |  |  |
| 5. Technologies Reference  6. Comments |                         | -                                                                            |                                                          |                  |                    |                     |                   |                                          |  |  |  |

| T                            | 7                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                              | Γ                                                                                  | D. Energy                                                                      | Saving for                                                                                                                           | Reh                                        | eating                   | g Fur                | nace                                              |                    |                                  |
|------------------------------|----------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|----------------------|---------------------------------------------------|--------------------|----------------------------------|
| L                            | <b>)-</b> 7                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                              | Oxy                                                                                | gen eni                                                                        | richment                                                                                                                             | for                                        | comb                     | ousi                 | otn aiı                                           | r                  |                                  |
|                              | Item                                   |                                                               |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                                                                | Cont                                                                                                                                 | ent                                        |                          |                      |                                                   |                    |                                  |
| l. Process Flo               | w or Diagram                           | volun                                                         | When oxygen is mixed into combusiotn air to increase the O2 percentage, thermal energy will be reduced with the decrease in the olume of exhaust gas. In many EAF plants, oxygen is generated by PSA or VPSA process, therfore, new equipment for oxygen eneration is not considered in this sheet. Only the electric power to generate oxygen is studied to estimate its economical effect. |                                                                                    |                                                                                |                                                                                                                                      |                                            |                          |                      |                                                   |                    |                                  |
| 2. Technology<br>Definition/ | Technology<br>Definition/Specification |                                                               |                                                                                                                                                                                                                                                                                                                                                                                              | ows the required for<br>furnace reduces to<br>nerated by VPSA<br>hows the economic | uel (thermal ene<br>o 45 % with 19.5<br>process, with the<br>cal effect of oxy | odel RHF of 100 to<br>rgy) and volume of<br>6 % fuel saving. The<br>e purity of 93 %.<br>gen enrichment. Re<br>se values of 17.11 to | oxygen.<br>e list als<br>equired e         | When ox o shows the      | ygen pe<br>ie requii | ercentage id ra<br>red oxygen vo<br>ssumed as 0.5 | aised to<br>olume. | 0 42 %, exhaust<br>The oxygen is |
|                              |                                        | ١.                                                            |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                                                                |                                                                                                                                      |                                            |                          |                      |                                                   |                    |                                  |
|                              |                                        | [                                                             | O2 in                                                                                                                                                                                                                                                                                                                                                                                        | Unit heat                                                                          | Rate                                                                           | Fuel gas                                                                                                                             | Value Sili                                 | 200                      |                      | flow rate                                         |                    | wer to                           |
|                              |                                        |                                                               | com. air                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                    | 0.000                                                                          | flow rate                                                                                                                            |                                            | rate                     |                      | furnace                                           |                    | duce O2                          |
|                              |                                        |                                                               | 21 %                                                                                                                                                                                                                                                                                                                                                                                         | 1,330 MJ/to                                                                        | inu investment                                                                 | 3,930 m3N/h                                                                                                                          |                                            | m3N/h                    |                      | 390 m3N/h                                         | /46                | ) kWh/ton                        |
|                              |                                        |                                                               | 24 %                                                                                                                                                                                                                                                                                                                                                                                         | 1,230 MJ/to                                                                        | ATT. I GOSPACOSTORY                                                            | 3,638 m3N/h                                                                                                                          | activity of exposerable recognises and the |                          | 74 855-615           | 720 m3N/h                                         |                    | kWh/ton                          |
|                              |                                        |                                                               | 27 %                                                                                                                                                                                                                                                                                                                                                                                         | 1,182 MJ/to                                                                        |                                                                                |                                                                                                                                      |                                            |                          | 140 m3N/h            |                                                   | kWh/ton            |                                  |
|                              |                                        |                                                               | 30 %                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |                                                                                |                                                                                                                                      |                                            | kWh/ton                  |                      |                                                   |                    |                                  |
|                              |                                        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    | 660 m3N/h                                                                      | 19.4                                                                                                                                 | kWh/ton                                    |                          |                      |                                                   |                    |                                  |
|                              |                                        | 36 % 1,100 MJ/ton 82.7 % 3,236 m3N/h 4,338 m3N/h 25,320 m3N/h |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                                                                |                                                                                                                                      | 21.7 kWh/ton                               |                          |                      |                                                   |                    |                                  |
|                              |                                        | 39 % 1,080 MJ/ton 81.2 % 3,190 m3N/h 4,715 m3N/h 23,430 m3N/  |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                                                                |                                                                                                                                      | 130 m3N/h                                  | 23.6 kWh/ton             |                      |                                                   |                    |                                  |
|                              |                                        | 42 % 1,070 MJ/ton 80.5 % 3,150 m3N/h 5,029 m3N/h 21,850 m3N/h |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                                                                |                                                                                                                                      |                                            | 25.1                     | kWh/ton              |                                                   |                    |                                  |
|                              |                                        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                                                                |                                                                                                                                      |                                            |                          |                      |                                                   |                    |                                  |
|                              |                                        |                                                               | O2 in                                                                                                                                                                                                                                                                                                                                                                                        | Required                                                                           | Fuel cost                                                                      | Power to                                                                                                                             |                                            | Electricity              |                      | Sum of                                            |                    | Rate of                          |
|                              |                                        |                                                               | com. air                                                                                                                                                                                                                                                                                                                                                                                     | thermal energy                                                                     |                                                                                | produce C                                                                                                                            |                                            | produce<br>0 mill.       | _                    | energy ci                                         |                    | cost                             |
|                              |                                        |                                                               | 21 %                                                                                                                                                                                                                                                                                                                                                                                         | 665,000 GJ/y                                                                       | 11.38 mill. US                                                                 |                                                                                                                                      | Wh/y                                       |                          |                      |                                                   |                    | 100.0 %                          |
|                              |                                        |                                                               | 24 %                                                                                                                                                                                                                                                                                                                                                                                         | 615,000 GJ/y                                                                       | 10.52 mill. US                                                                 |                                                                                                                                      |                                            | 0.50 mill.               |                      | 11.02 mill.                                       |                    | 96.8 %                           |
|                              |                                        |                                                               | 27 %                                                                                                                                                                                                                                                                                                                                                                                         | 591,000 GJ/y                                                                       | 10.11 mill. US                                                                 | _                                                                                                                                    |                                            | 0.79 mill.<br>1.01 mill. |                      | 10.90 mill.                                       |                    | 95.8 %                           |
|                              |                                        |                                                               | 30 %                                                                                                                                                                                                                                                                                                                                                                                         | 570,000 GJ/y<br>560,000 GJ/y                                                       | 9.75 mill. US<br>9.58 mill. US                                                 |                                                                                                                                      |                                            | 1.01 mill.               |                      | 10.76 mill.                                       | -                  | 94.6 %                           |
|                              |                                        |                                                               | CU                                                                                                                                                                                                                                                                                                                                                                                           | 550,000 GJ/y                                                                       | 9.41 mill. US                                                                  |                                                                                                                                      | 0.                                         | 1.19 mill.               | - 4                  | 10.77 mill.                                       | - 30               | 94.6 %                           |
|                              |                                        |                                                               | 36 %<br>39 %                                                                                                                                                                                                                                                                                                                                                                                 | 540,000 GJ/y                                                                       | 9.41 mill. US<br>9.24 mill. US                                                 | VIOLET CONTROL CONTROL                                                                                                               | 7/2                                        | 1.33 mill.               |                      | 10.74 mill.                                       |                    | \$121.03160.00Pg                 |
|                              |                                        |                                                               | 42 %                                                                                                                                                                                                                                                                                                                                                                                         | 535,000 GJ/y                                                                       | 9.24 mill. US<br>9.15 mill. US                                                 |                                                                                                                                      | or entered                                 | 1.45 mill.               |                      | 10.69 mill.                                       | CHARLES IN         |                                  |
|                              |                                        |                                                               | 42 70                                                                                                                                                                                                                                                                                                                                                                                        | 555,000 GJ/ y                                                                      | 9.13 mm. 03                                                                    | 12,330 W                                                                                                                             | VV11/ y                                    | 1.54 11111.              | 03\$/y               | 10.03 mm.                                         | 039/y              | 33.3 %                           |
|                              | •Electricity Saving                    | Whe                                                           | n oxxygen                                                                                                                                                                                                                                                                                                                                                                                    | percentage is ra                                                                   | nised to 39 %,                                                                 | 23.6 kWh/ton of                                                                                                                      | electric                                   | eity is nee              | ded.                 |                                                   |                    |                                  |
| 3. Expected<br>Effect of     | Thermal Energy Savings                 | When                                                          | n oxxygen                                                                                                                                                                                                                                                                                                                                                                                    | percentage is ra                                                                   | nised to 39 %,                                                                 | 0.26 GJ/ton of th                                                                                                                    | ermal e                                    | nergy is s               | saved.               |                                                   |                    |                                  |
| Technology<br>Introduction   | •Environmental benefits                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                                                                |                                                                                                                                      |                                            |                          |                      |                                                   |                    |                                  |
|                              | •Co-benefits                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                                                                |                                                                                                                                      |                                            |                          |                      |                                                   |                    |                                  |
| . Japanese M                 | l<br>Iain Supplier                     | Chug                                                          | gai-Ro, Ro                                                                                                                                                                                                                                                                                                                                                                                   | zai Kogyo, Nipp                                                                    | oon furnace                                                                    |                                                                                                                                      |                                            |                          |                      |                                                   |                    |                                  |
| . Technologie                |                                        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                              | 22 / 11                                                                            |                                                                                |                                                                                                                                      |                                            |                          |                      |                                                   |                    |                                  |
| 6. Comments                  |                                        |                                                               | ace manuf                                                                                                                                                                                                                                                                                                                                                                                    | actureres can ar                                                                   | range the oxyg                                                                 | gen control syster                                                                                                                   | n and p                                    | iping reva               | amping               |                                                   |                    |                                  |



| E-2                                                  |                            | E. Con                                                                                                                                                                     | nmon systems and                                                                                                                                                                                    | General Energ                                                                                                      | gy Savings                                                                                                                                                                                  |  |  |  |  |  |
|------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                      |                            | Energy monitoring and management systems                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                             |  |  |  |  |  |
|                                                      | Item                       | Content                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                             |  |  |  |  |  |
| 1. Process Flow or Diagram                           |                            | Online mo<br>Electric<br>Power                                                                                                                                             | Daily and reports of bala onitoring and locurre                                                                                                                                                     | of energy<br>ince<br>ogging syster                                                                                 | n for energy<br>Oxygen                                                                                                                                                                      |  |  |  |  |  |
| 2. Technology<br>Definition                          | n/Specification            | so that typical situations may be a It is the main technique used to a - Continuous monitoring systems: enable instant maintenance, und - Reporting and analyzing tools: I | used for the most important<br>analyzed. It is very important<br>avoid energy losses.  Since all energy-related production process. Reporting tools are often use<br>ing, controlling energy is the | at energy flows at the sint to monitor for all energy flows are used to check the average e basis for optimizing e | ite. The data are stored for a long time<br>orgy sources on online.  sed to optimize process control and to<br>e energy consumption of each process<br>energy consumption and cost savings. |  |  |  |  |  |
|                                                      | •Electricity Saving        | -                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                             |  |  |  |  |  |
| 3. Expected Effect of                                | •Thermal Energy<br>Savings | Energy saving effect depends on                                                                                                                                            | the local conditions, therefor                                                                                                                                                                      | ore, quantitative estimat                                                                                          | tion is difficult.                                                                                                                                                                          |  |  |  |  |  |
| Technology<br>Introduction                           | •Environmental<br>Benefits | -                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                             |  |  |  |  |  |
|                                                      | •Co-benefits               | -                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                             |  |  |  |  |  |
| 4. Japanese Main Supplier  5. Technologies Reference |                            | Fuji Electric                                                                                                                                                              |                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                             |  |  |  |  |  |
|                                                      |                            |                                                                                                                                                                            |                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                             |  |  |  |  |  |
| 6. Comments                                          |                            |                                                                                                                                                                            |                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                             |  |  |  |  |  |



| F                                           | <b>C-4</b>                        | E. Common systems and General Energy Savings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|---------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                             | Item                              | Highly efficient combustion system for radiant tube burner  Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| 1. Process Flow                             | Trum                              | Silicon-Carbide Inserts for heat radiation Radiant Tube  Silicon Carbide Heat Exchanger  Burner  Exhaust gas flow on the silicon-carbide heat exchanger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| 2. Technology De                            | finition/Specification            | Radiant tube burner which consists of 1)Radiant tube(U shape or W shape), 2)Gas Burner, 3)3-D formed silicon-carbide Inserts for heat radiation, and 4)Heat exchanger made of 3-D formed silicon carbide.  These 3-D formed silicon carbide elements have high thermal conductivity and wide surface area, which allow approx. 10% improvement in heat recovery compared to conventional radiant tube burners with heat exchanger made of steel.  Any industrial furnace with radiant tube burner will potentially be applicable and typical applicable furnace will be CGL, Continuous Galvalizing Line or CAL, Continuous Annealing Line, with approx. 100-200 radiant tube burners of 210-420MJ/hour of rated combustion volume.  *Radiant tube burner is often used for the industrial furnaces such as heat treatment furnace which requires indirect heating. |  |  |  |  |  |  |  |
| 3. Investment Cos<br>& Operating            |                                   | The cost of adding this system into existing furnace will be approximately 1.6 million JPY for one burner which have 420MJ/hour of combustion rate. This includes the cost for installation work and combustion adjustments. Operating life for silicon carbide elements is considered to be semipermanently.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| 4. Effect of<br>Technology<br>Introduction  | • Reduction of CO2<br>Emission    | 2,654t-CO2/year under assumptions below.  1) 10% of Fuel substitution will be achieved by replacing conventional recupecator into DINCS (Daido Innovative Neo Combustion System) to the CGL with 200 radiant tube burners.  2) Each burners have 420MJ/h of rated combustion volume, and combusted at 80% rate on average.  3) Furnace operation is 330days/year, 24 hours/day.  Production capacity is assumed as 594,000 ton/y (75 ton/h x 24h x 330 day/y)  4) The effect is calculated as comparison with steel heat exchanger system  5) Natural gas is used as for combustion.  53222(GJ/year)  × 0.0136(tC/GJ) × 44/12 = 2,654(tCO2/year)                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|                                             | • Fuel Savings                    | 53,222GJ/year under assumptions same as above 0.0896 GJ/ton saving (= 53,222 GJ/y / 594,000 ton-product/y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|                                             | Electricity Savings               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| 5. Direct Effect<br>(Annual                 | Economic Effect<br>(payback time) | Approx. 4.9 years under assumptions same as above.  Cost for installation work and combustion adjustment are included (1,600,000JPY) and the price of thermal enrgy is assumed to be 19.11 US\$/GJ (2,100 JPY/GJ).  Annual profit = 53,222 GJ/y x 19.11 US\$/GJ / 594,000 ton/y = 1.71 US\$/ton-product <calcuation> Payback time = (1,600,000 JPY x 200 units) / (53,222 GJ/y x 2,100 JPY/GJ) = 2.86 year</calcuation>                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| Operating Cost )                            | Productivity Improvement          | Since this system transfers the heat effectivly into the furnace or into product, line speed of the furnacecan be increased which results in productivity improvement, if there is no restrictions for the equpment other than the combustion system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|                                             | Maintenance Cost<br>Reduction     | Conventional heat exchanger made of steel usually requires replacement every 3-4 years, but silicon carbide elements will not deteriorate over time and last semipermanently.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| C 1                                         | Product Quality Improvement       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| 6. Indirect Effect<br>(Co-benefits)         | • SOx, Dust Decrease              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|                                             | • Water-saving                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| 7. Proficiency Level of Technology in Japan |                                   | Applied to more than 30 heat treatment furnaces.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 8. Japanese Main                            | Supplier                          | Daido Steel Co., Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| 9. Technologies R                           | eference:                         | Japanese patent No.6587411 (Radiant tube type heating device) Japanese patent No.6790554 (Radiant tube type heating device)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| 10. Preconditions                           |                                   | Investment cost and benefit vary depending on furnace specification, operation condition, fuel cost, etc of each customer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|                                             |                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |

## **Contact Points of Suppliers**

| Company                                | Contact Points                                                                                                                                                                                            | Technologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JP Steel Plantech Co.                  | Kaneko 2nd Building 4-9F 2-6-23<br>Shin-yokohama, Kohoku-ku,<br>Yokohama 222-0033 JAPAN<br>Phone: +81-45-471-3911 Fax: +81-<br>45-471-4002<br>https://steelplantech.com/en/                               | A-1: High temperature continuous scrap preheating EAF A-3: High efficiency oxy-fuel burner/lancing for EAF A-4: Eccentric bottom tapping (EBT) on existing furnace A-5: Ultra high-power transformer for EAF A-6: Optimizing slag foaming in EAF A-7: Optimized power control for EAF A-11: Waste heat recovery from EAF A-12: Energy saving for dedusting system in EAF meltshop B-1: Exhaust gas treatment through gas cooling, carbon injection, and bag filter dedusting for EAF B-2: Floating dust control in EAF meltshop B-4: Dioxin adsorption by mixing EAF exhaust gas with building dedusting gas B-5: Dioxin adsorption by 2 step bagfilter technology for EAF exhaust gas B-6: PKS charcoal use for EAF                                                                                                        |
| Daido Steel Co., Ltd .                 | 1-10, Higashisakura 1-chome,<br>Higashi-ku,<br>Nagoya, Aichi, 461-8581, Japan<br>TEL:+81-52-963-7501 FAX: +81-<br>52-963-4386<br>https://www.daido.co.jp/                                                 | A-2: Medium temperature batch scrap preheating EAF A-3: High efficiency oxy-fuel burner/lancing for EAF A-4: Eccentric bottom tapping (EBT) on existing furnace A-5: Ultra high-power transformer for EAF A-6: Optimizing slag foaming in EAF A-8: Operation support system with EAF meltdown judgment A-12: Energy saving for dedusting system in EAF meltshop A-13: Bottom stirring/stirring gas injection A-16: Arc furnace with shell rotation drive B-1: Exhaust gas treatment through gas cooling, carbon injection, and bag filter dedusting for EAF B-2: Floating dust control in EAF meltshop B-4: Dioxin adsorption by mixing EAF exhaust gas with building dedusting gas B-5: Dioxin adsorption by 2 step bagfilter technology for EAF exhaust gas C-1: EAF dust and slag recycling system by oxygen-fuel burner |
| Nikko Industry Co.,<br>Ltd.            | 2-4-10, Nunobiki-cho, Chuo-ku,<br>Kobe-city,<br>Hyogo 651-0097. Japan<br>TEL: +81-78-222-1688 FAX: +81-<br>78-222-2916<br>https://www.nikko-<br>japan.co.jp/home_en/<br>E-mail: nikko@nikko-japan.co.jp   | A-3: High efficiency oxy-fuel burner/lancing for EAF A-4: Eccentric bottom tapping (EBT) on existing furnace A-5: Ultra high-power transformer for EAF A-6: Optimizing slag foaming in EAF A-13: Bottom stirring/stirring gas injection B-1: Exhaust gas treatment through gas cooling, carbon injection, and bag filter dedusting for EAF B-4: Dioxin adsorption by mixing EAF exhaust gas with building dedusting gas B-5: Dioxin adsorption by 2 step bagfilter technology for EAF exhaust gas C-2: EAF slag agglomeration for aggregate use                                                                                                                                                                                                                                                                             |
| Chugai Ro Co., Ltd.                    | 3-6-1 Hiranomachi, Chuo-ku, Osaka<br>541-0046, Japan<br>TEL: +81-6-6221-1251 FAX: +81-<br>6-6221-1411<br>https://chugai.co.jp/en/                                                                         | A-9: Low NOx regenerative burner system for ladle preheating     A-10: Oxygen burner system for ladle preheating     D-1: Process control for reheating furnace     D-2: Low NOx regenerative burner total system for reheating furnace     D-3: High temperature recuperator for reheating furnace     D-4: Fiber block for insulation of reheating furnace     D-7: Oxygen enrichment for RHF combustion air     E-4: Highly efficient combustion system for radiant tube burner                                                                                                                                                                                                                                                                                                                                          |
| Nippon Furnace Co.,<br>Ltd.            | 2-1-53, Shitte, Tsurumi-ku,<br>Yokohama City, Kanagawa<br>Prefecture, 230-8666 Japan<br>TEL.+81-45-575-8111 FAX.+81-<br>45-575-8046<br>http://www.furnace.co.jp/en.html<br>E-mail.webmaster@furnace.co.jp | A-9: Low NOx regenerative burner system for ladle preheating     A-10: Oxygen burner system for ladle preheating     D-2: Low NOx regenerative burner total system for reheating furnace     D-7: Oxygen enrichment for RHF combustion air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Fuji Electric Co., Ltd.                | Gate City Ohsaki, East Tower, 11-2,<br>Osaki 1-chome, Shinagawa-ku,<br>Tokyo 141-0032, Japan<br>https://www.fujielectric.com/contact/<br>?ui_medium=gl_glnavi                                             | A-5: Ultra high-power transformer for EAF A-12: Energy saving for dedusting system in EAF meltshop A-14: Induction type tundish heater E-1: Inverter (VVVF; Variable Voltage Valuable Frequency) Drive for Motors E-2: Energy monitoring and management systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Fuji Car<br>Manufacturing Co.,<br>Ltd. | 13-1 Chishiro-cho, Moriyama-city,<br>Shiga,<br>JAPAN 524-0034<br>TEL +81-77-583-1235 / FAX +81-<br>77-582-8805                                                                                            | A-15: Scrap pretreatment with scrap shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                                         | http://www.fujicar.com/ENG fujicar/                                                                                                                                   |                                                                                                                                                                                                                                                                           |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JFE Engineering<br>Corporation          | 2-1,Suehiro-cho,Tsurumi-<br>ku,Yokohama<br>230-8611, JAPAN<br>http://www.jfe-eng.co.jp/en/                                                                            | B-3: Dioxin adsorption by activated carbon for EAF exhaust gas                                                                                                                                                                                                            |
| Rozai Kogyo Kaisha<br>Ltd.              | 2-14, Minamihorie 1-chome, Nishi-<br>ku, Osaka,<br>Japan 550-0015<br>Phone: +81 6-6534-3609 / Fax: +81<br>6-6534-3602<br>http://www.rozai.co.jp/en/company/index.html | D-1: Process control for reheating furnace D-2: Low NOx regenerative burner total system for reheating furnace D-3: High temperature recuperator for reheating furnace D-4: Fiber block for insulation of reheating furnace D-7: Oxygen enrichment for RHF combustion air |
| Mitsui E&S Power<br>Systems Inc.        | MESPS Tokyo Office: TEL +81-3-6806-1075 FAX +81-3-5294-1121 https://www.mesps.co.jp/contact/index.html                                                                | D-6: Induction type billet heater RHF for direct rolling                                                                                                                                                                                                                  |
| Nippon<br>SteelEngineering Co.,<br>Ltd. | Osaki Center Building, 1-5-1 Osaki,<br>Shinagawa-ku,Tokyo 141-8604<br>JapanTEL: +81-3-6665-<br>2000https://www.eng.nipponsteel.co<br>m/english/                       | A-17: NS-Tundish Plasma Heater (NS-TPH) D-2: Low NOx regenerative burner total system for reheating furnace                                                                                                                                                               |

# ANNEX 1. Expected Effects in Each ASEAN Country

### **Pre-Conditions for Calculations of Effects**

- As the plant costs and energy prices may change country to country, the differences are shown in the list of "Energy price, plant cost, and CO2 emission factor in ASEAN countries".
- Plant cost in each country is calculated by multiplying "plant cost index" to the cost in Japan.
- By using plant costs and energy prices, profit of operation and simple pay-back time are calculated for each ASEAN country in the sheet of "Expected effects in each ASEAN country". This calculation suggests that when energy price is high, energy saving project is profitable even though the plant cost is expensive.
- CO2 emission reduction is also calculated for each country by using emission factor of electricity in each
  country and the common value of CO2 emission rate from fuel. LPG is assumed to calculate CO2 emission
  from fuel combustion as: 47.3 GJ/ton-LPG & 2,985 kg-CO2/ton-LPG ---> 63.1 kg-CO2/GJ

### Energy price, plant cost, and CO2 emission factor in ASEAN countries

| Country     | Electricity price for industry use 1) (US\$/kWh) | Fuel gas price for industry use 1) (US\$/GJ) | Plant cost index <sup>2)</sup><br>(Japan = 100.0) | CO2 emission factor <sup>3)</sup> (ton-CO2/MWh) |
|-------------|--------------------------------------------------|----------------------------------------------|---------------------------------------------------|-------------------------------------------------|
| Thailand    | 0.111                                            | 20.62                                        | 81.4                                              | 0.548                                           |
| Indonesia   | 0.070                                            | 9.68                                         | 76.1                                              | 0.771                                           |
| Vietnam     | 0.076                                            | 24.98                                        | 70.2                                              | 0.599                                           |
| Philippines | 0.200                                            | 25.89                                        | 74.4                                              | 0.512                                           |
| Malaysia    | 0.077                                            | 7.49                                         | 77.4                                              | 0.670                                           |
| Singapore   | 0.130                                            | 48.61                                        | 97.4                                              | 0.486                                           |
| Japan       | 0.143                                            | 19.11                                        | 100.0                                             | 0.434 4)                                        |

Source

- 1) JETRO website (2021)
- 2) 2019PCI\_LF\_summary.pdf, Japan Machinery Center for Trade and Investment
- 3) average of combined margin from CDM projects, IGES website (2021.2.23)
- 4) Tokyo Electric Power Company website (2021)

# **Expected effects in Thailand, Indonesia and Vietnam**

|         |          |                                                                                                     | J. V.I                   | Thail                       |                         |                  | ,                        | Indone                      |                         |                  |                          | Vietn                       | am                      |                  |
|---------|----------|-----------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|-------------------------|------------------|--------------------------|-----------------------------|-------------------------|------------------|--------------------------|-----------------------------|-------------------------|------------------|
|         |          |                                                                                                     | Preconditions            |                             |                         |                  | Preconditions            | Muone                       |                         |                  | Precondition             |                             |                         |                  |
|         |          |                                                                                                     |                          | factor (ton-CO2/MV          | Vh)                     | 0.548            |                          | factor (ton-CO2/MV          | Vh)                     | 0.771            |                          | factor (ton-CO2/MV          | Vh)                     | 0.599            |
|         |          |                                                                                                     | Electricity p            | rice (US\$/kWh)             |                         | 0.111            | Electricity p            | rice (US\$/kWh)             |                         | 0.070            | Electricity p            | rice (US\$/kWh)             |                         | 0.076            |
|         |          | Title of technology                                                                                 | Fuel gas pric            | ce (US\$/GJ) (LI            | PG)                     | 20.62            | Fuel gas prie            | e (US\$/GJ) (LI             |                         | 9.68             | Fuel gas pri             | ce (US\$/GJ) (LI            | PG)                     | 24.98            |
|         |          |                                                                                                     | CO2<br>reduction         | Profit or<br>Operation cost | Assumed investment cost | Pay back<br>time | CO2<br>reduction         | Profit or<br>Operation cost | Assumed investment cost | Pay back<br>time | CO2<br>reduction         | Profit or<br>Operation cost | Assumed investment cost | Pay back<br>time |
|         |          |                                                                                                     | (kg-CO2/<br>ton-product) | (US\$/ton-<br>product)      | (million<br>US\$)       | (year)           | (kg-CO2/<br>ton-product) | (US\$/ton-<br>product)      | (million<br>US\$)       | (year)           | (kg-CO2/<br>ton-product) | (US\$/ton-<br>product)      | (million<br>US\$)       | (year)           |
| A. Ener | gy Savi  | ng for Electric Arc Furnace (EAF)                                                                   |                          |                             |                         |                  |                          |                             |                         |                  |                          |                             |                         |                  |
| 1       | A-1      | High temperature continuous scrap<br>preheating EAF                                                 | 82.20                    | 16.65                       | 30.93                   | 3.7              | 115.65                   | 10.50                       | 28.92                   | 5.5              | 89.85                    | 11.40                       | 26.68                   | 4.7              |
| 2       | A-2      | Medium temperature batch scrap<br>preheating EAF                                                    | 21.92                    | 4.44                        | 8.14                    | 3.7              | 30.84                    | 2.80                        | 7.61                    | 5.4              | 23.96                    | 3.04                        | 7.02                    | 4.6              |
| 3       | A-3      | High efficiency oxy-fuel<br>burner/lancing for EAF                                                  | 7.84                     | 1.59                        | 1.67                    | 2.1              | 11.03                    | 1.00                        | 1.56                    | 3.1              | 8.57                     | 1.09                        | 1.44                    | 2.6              |
| 4       | A-4      | Eccentric bottom tapping (EBT) on existing furnace                                                  | 8.22                     | 1.67                        | 3.26                    | 3.9              | 11.57                    | 1.05                        | 3.04                    | 5.8              | 8.99                     | 1.14                        | 2.81                    | 4.9              |
| 5       | A-5      | Ultra high-power transformer for EAF                                                                | 8.22                     | 1.67                        | 4.61                    | 5.5              | 11.57                    | 1.05                        | 4.31                    | 8.2              | 8.99                     | 1.14                        | 3.97                    | 7.0              |
| 6       | A-6      | Optimizing slag foaming in EAF                                                                      | 3.29                     | 0.67                        | 1.22                    | 3.7              | 4.63                     | 0.42                        | 1.14                    | 5.4              | 3.59                     | 0.46                        | 1.05                    | 4.6              |
| 7       | A-7      | Optimized power control for EAF                                                                     | 8.22                     | 1.67                        | 2.04                    | 2.4              | 11.57                    | 1.05                        | 1.90                    | 3.6              | 8.99                     | 1.14                        | 1.76                    | 3.1              |
| 8       | A-8      | Operation support system with<br>EAF meltdown judgment                                              | 3.29                     | 0.67                        | 0.53                    | 1.6              | 4.63                     | 0.42                        | 0.49                    | 2.4              | 3.59                     | 0.46                        | 0.46                    | 2.0              |
| 9       | A-9      | Low NOx regenerative burner system for ladle preheating                                             | 12.62                    | 4.12                        | 0.33                    | 0.2              | 12.62                    | 1.94                        | 0.30                    | 0.3              | 12.62                    | 5.00                        | 0.28                    | 0.1              |
| 10      | A-10     | Oxygen burner system for ladle preheating                                                           | 12.62                    | 4.12                        | 0.24                    | 0.1              | 12.62                    | 1.94                        | 0.23                    | 0.2              | 12.62                    | 5.00                        | 0.21                    | 0.1              |
| 11      | A-11     | Waste heat recovery from EAF                                                                        | 72.34                    | 14.65                       | 48.84                   | 6.7              | 101.77                   | 9.24                        | 45.66                   | 9.9              | 79.07                    | 10.03                       | 42.12                   | 8.4              |
| 12      | A-12     | Energy saving for dedusting system in EAF meltshop                                                  | 3.29                     | 0.67                        | 0.65                    | 2.0              | 4.63                     | 0.42                        | 0.61                    | 2.9              | 3.59                     | 0.46                        | 0.56                    | 2.5              |
| 13      | A-13     | Bottom stirring/stirring gas<br>injection                                                           | 9.86                     | 2.00                        | 0.21                    | 0.2              | 13.88                    | 1.26                        | 0.20                    | 0.3              | 10.78                    | 1.37                        | 0.18                    | 0.3              |
| 14      | A-17     | NS-Tundish Plasma Heater (NS-<br>TPH)                                                               | 12.06                    | 2.44                        | 3.13                    | 2.6              | 16.96                    | 1.54                        | 2.93                    | 3.8              | 13.18                    | 1.67                        | 2.70                    | 3.2              |
| 15      | A-14     | Induction type tundish heater                                                                       | 1.64                     | 0.33                        | 0.81                    | 4.9              | 2.31                     | 0.21                        | 0.76                    | 7.2              | 1.80                     | 0.23                        | 0.70                    | 6.2              |
| 16      | A-15     | Scrap pretreatment with scrap shear                                                                 | 10.96                    | 2.22                        | 3.09                    | 2.8              | 15.42                    | 1.40                        | 2.89                    | 4.1              | 11.98                    | 1.52                        | 2.67                    | 3.5              |
| 17      | A-16     | Arc furnace with shell rotation drive                                                               | 17.54                    | 2.22                        | 4.88                    | 4.4              | 24.67                    | 1.40                        | 4.57                    | 6.5              | 19.17                    | 1.52                        | 4.21                    | 5.5              |
| B. Env  |          | ntal Protection for Electric Arc Fu                                                                 | rnace                    |                             |                         |                  |                          |                             |                         | r                |                          |                             | •                       | ,                |
| 18      | B-1      | Exhaust gas treatment through gas<br>cooling, carbon injection, and bag<br>filter dedusting for EAF | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                |                          | -                           | -                       | -                |
| 19      | B-2      | Floating dust control in EAF meltshop                                                               | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                |
| 20      | B-3      | Dioxin adsorption by activated carbon for EAF exhaust gas                                           | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                |
| 21      | B-4      | Dioxin adsorption by mixing EAF<br>exhaust gas with building dedusting<br>gas                       | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                |
| 22      | B-5      | Dioxin absorption by 2 step<br>bagfilter technology for EAF<br>exhaust gas                          | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                |
| 23      | B-6      | PKS charcoal use for EAF                                                                            | -                        | -                           | -                       | -                |                          | -                           | -                       | -                | -                        | -                           | -                       | -                |
| C. Mat  | erial Re | ecycle for Electric Arc Furnace                                                                     |                          |                             |                         |                  |                          |                             | <u> </u>                | I                | <u>I</u>                 | I.                          | I                       | 1                |
| 24      | C-1      | EAF dust and slag recycling system                                                                  | _                        | _                           | _                       | _                | _                        | _                           | -                       | _                | _                        | _                           | _                       | _                |
| 25      | C2       | by oxygen-fuel burner EAF slag agglomeration for aggregate use                                      | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                |
| D. Ene  |          | ing for Reheating Furnace                                                                           |                          |                             |                         |                  |                          |                             |                         | 1                | <u>I</u>                 | I .                         | 1                       | 1                |
| 26      | D-1      | Process control for reheating                                                                       | 3.16                     | 1.03                        | 2.04                    | 3.9              | 3.16                     | 0.48                        | 1.90                    | 7.9              | 3.16                     | 1.25                        | 1.76                    | 2.8              |
| 27      | D-2      | furnace  Low NOx regenerative burner total                                                          | 11.93                    | 3.90                        | 6.51                    | 3.3              | 11.93                    | 1.83                        | 6.09                    | 6.7              | 11.93                    | 4.72                        | 5.62                    | 2.4              |
| 28      | D-3      | System for reheating furnace High temperature recuperator for                                       | 6.31                     | 2.06                        | 1.22                    | 1.2              | 6.31                     | 0.97                        | 1.14                    | 2.4              | 6.31                     | 2.50                        | 1.05                    | 0.8              |
| 29      | D-4      | reheating furnace Fiber block for insulation of reheating furnace                                   | 2.46                     | 0.80                        | 1.22                    | 3.0              | 2.46                     | 0.38                        | 1.14                    | 6.0              | 2.46                     | 0.97                        | 1.05                    | 2.2              |
| 30      |          | Induction type billet heater for direct rolling                                                     | 113.42                   | 25.46                       | 0.81                    | 0.1              | 122.34                   | 11.24                       | 0.76                    | 0.1              | 115.46                   | 33.18                       | 0.70                    | 0.0              |
| 31      | D-7      | Oxygen enrichment for combustion air                                                                | 29.34                    | 2.74                        | -                       | -                | 34.60                    | 0.86                        | -                       | -                | 30.54                    | 4.70                        | -                       | -                |
| E. Con  |          | air<br>stems and General Energy Saving                                                              | s                        |                             |                         |                  |                          |                             | <u> </u>                | I                | I .                      | I                           |                         | 1                |
| 32      | F-1      | Inverter (VFD; Variable Frequency<br>Drive) drive for motors                                        | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                |
| 33      | F-2      | Energy monitoring and management systems                                                            | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                |
| 34      |          | Management of compressed air delivery pressure optimization                                         | -                        | -                           | -                       | -                |                          | -                           | -                       | -                | -                        | -                           | -                       | -                |
| 35      |          | Highly efficient combustion system for radiant tube burner                                          | 5.65                     | 1.85                        | 2.36                    | 2.2              | 5.65                     | 0.87                        | 2.21                    | 4.3              | 5.65                     | 2.24                        | 2.04                    | 1.5              |
|         |          | 101 Taulain tude Dufflet                                                                            |                          |                             |                         |                  |                          |                             |                         | l                | 1                        |                             |                         | l                |

**Expected effects in Philippines, Malaysia and Singapore** 

|        |            | Expected                                                                                            | епе                      | cts in                      | Phill                         | ppın             | es, n                    | vialays                     | sia an                  | <u>a 5</u>       | mgap                     | ore                         |                         |                  |
|--------|------------|-----------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|-------------------------------|------------------|--------------------------|-----------------------------|-------------------------|------------------|--------------------------|-----------------------------|-------------------------|------------------|
|        |            |                                                                                                     |                          | Philipp                     | ines                          |                  | Malaysia                 |                             |                         |                  | Singapore                |                             |                         |                  |
|        |            |                                                                                                     | Preconditions            |                             |                               |                  | Preconditions            | -                           |                         |                  | Preconditions            |                             |                         |                  |
|        |            |                                                                                                     |                          | rice (US\$/kWh)             | Vh)                           | 0.512            |                          | rice (US\$/kWh)             | /h)                     | 0.670            |                          | rice (US\$/kWh)             | Vh)                     | 0.486            |
|        |            | Title of technology                                                                                 |                          | e (US\$/GJ) (LI             | PG)                           | 25.89            |                          | ce (US\$/GJ) (LI            | <b>PG</b> )             | 7.49             |                          | ce (US\$/GJ) (LI            | PG)                     | 48.61            |
|        |            |                                                                                                     | CO2<br>reduction         | Profit or<br>Operation cost | Assumed<br>investment<br>cost | Pay back<br>time | CO2<br>reduction         | Profit or<br>Operation cost | Assumed investment cost | Pay back<br>time | CO2<br>reduction         | Profit or<br>Operation cost | Assumed investment cost | Pay back<br>time |
|        |            |                                                                                                     | (kg-CO2/<br>ton-product) | (US\$/ton-<br>product)      | (million<br>US\$)             | (year)           | (kg-CO2/<br>ton-product) | (US\$/ton-<br>product)      | (million<br>US\$)       | (year)           | (kg-CO2/<br>ton-product) | (US\$/ton-<br>product)      | (million<br>US\$)       | (year)           |
| A Fron | rav Sovi   | ng for Electric Arc Furnace (EAF)                                                                   | ton-product)             | product)                    | (33)                          |                  | ton-product)             | producti                    | 033)                    |                  | ton-product)             | product)                    | 03\$)                   |                  |
|        |            | High temperature continuous scrap                                                                   |                          |                             |                               |                  |                          |                             |                         |                  |                          |                             |                         |                  |
| 1      | A-1        | preheating EAF                                                                                      | 76.80                    | 30.00                       | 28.27                         | 1.9              | 100.50                   | 11.55                       | 29.41                   | 5.1              | 72.90                    | 19.50                       | 37.01                   | 3.8              |
| 2      | A-2        | Medium temperature batch scrap<br>preheating EAF<br>High efficiency oxy-fuel                        | 20.48                    | 8.00                        | 7.44                          | 1.9              | 26.80                    | 3.08                        | 7.74                    | 5.0              | 19.44                    | 5.20                        | 9.74                    | 3.7              |
| 3      | A-3        | burner/lancing for EAF                                                                              | 7.32                     | 2.86                        | 1.53                          | 1.1              | 9.58                     | 1.10                        | 1.59                    | 2.9              | 6.95                     | 1.86                        | 2.00                    | 2.1              |
| 4      | A-4        | Eccentric bottom tapping (EBT) on existing furnace                                                  | 7.68                     | 3.00                        | 2.98                          | 2.0              | 10.05                    | 1.16                        | 3.10                    | 5.4              | 7.29                     | 1.95                        | 3.90                    | 4.0              |
| 5      | A-5        | Ultra high-power transformer for EAF                                                                | 7.68                     | 3.00                        | 4.21                          | 2.8              | 10.05                    | 1.16                        | 4.38                    | 7.6              | 7.29                     | 1.95                        | 5.51                    | 5.7              |
| 6      | A-6        | Optimizing slag foaming in EAF                                                                      | 3.07                     | 1.20                        | 1.12                          | 1.9              | 4.02                     | 0.46                        | 1.16                    | 5.0              | 2.92                     | 0.78                        | 1.46                    | 3.7              |
| 7      | A-7        | Optimized power control for EAF                                                                     | 7.68                     | 3.00                        | 1.86                          | 1.2              | 10.05                    | 1.16                        | 1.94                    | 3.4              | 7.29                     | 1.95                        | 2.44                    | 2.5              |
| 8      | A-8        | Operation support system with<br>EAF meltdown judgment                                              | 3.07                     | 1.20                        | 0.48                          | 0.8              | 4.02                     | 0.46                        | 0.50                    | 2.2              | 2.92                     | 0.78                        | 0.63                    | 1.6              |
| 9      | A-9        | Low NOx regenerative burner system for ladle preheating                                             | 12.62                    | 5.18                        | 0.30                          | 0.1              | 12.62                    | 1.50                        | 0.31                    | 0.4              | 12.62                    | 9.72                        | 0.39                    | 0.1              |
| 10     | A-10       | Oxygen burner system for ladle<br>preheating                                                        | 12.62                    | 5.18                        | 0.22                          | 0.1              | 12.62                    | 1.50                        | 0.23                    | 0.3              | 12.62                    | 9.72                        | 0.29                    | 0.1              |
| 11     | A-11       | Waste heat recovery from EAF                                                                        | 67.58                    | 26.40                       | 44.64                         | 3.4              | 88.44                    | 10.16                       | 46.44                   | 9.1              | 64.15                    | 17.16                       | 58.44                   | 6.8              |
| 12     | A-12       | Energy saving for dedusting system                                                                  | 3.07                     | 1.20                        | 0.60                          | 1.0              | 4.02                     | 0.46                        | 0.62                    | 2.7              | 2.92                     | 0.78                        | 0.78                    | 2.0              |
| 13     | A-13       | in EAF meltshop<br>Bottom stirring/stirring gas                                                     | 9.22                     | 3.60                        | 0.19                          | 0.1              | 12.06                    | 1.39                        | 0.20                    | 0.3              | 8.75                     | 2.34                        | 0.25                    | 0.2              |
| 14     | A-17       | injection NS-Tundish Plasma Heater (NS-                                                             | 11.26                    | 4.40                        | 2.86                          | 1.3              | 14.74                    | 1.69                        | 2.98                    | 3.5              | 10.69                    | 2.86                        | 3.75                    | 2.6              |
| 15     | A-14       | TPH) Induction type tundish heater                                                                  | 1.54                     | 0.60                        | 0.74                          | 2.5              | 2.01                     | 0.23                        | 0.77                    | 6.7              | 1.46                     | 0.39                        | 0.97                    | 5.0              |
|        |            |                                                                                                     |                          |                             |                               |                  |                          |                             |                         |                  |                          |                             |                         |                  |
| 16     | A-15       | Scrap pretreatment with scrap shear                                                                 | 10.24                    | 4.00                        | 2.83                          | 1.4              | 13.40                    | 1.54                        | 2.94                    | 3.8              | 9.72                     | 2.60                        | 3.70                    | 2.8              |
| 17     | A-16       | Arc furnace with shell rotation drive                                                               | 16.38                    | 4.00                        | 4.46                          | 2.2              | 21.44                    | 1.54                        | 4.64                    | 6.0              | 15.55                    | 2.60                        | 5.84                    | 4.5              |
| B. Env | ironme     | ntal Protection for Electric Arc Fu                                                                 | rnace                    |                             |                               |                  |                          | 1                           |                         |                  | I                        | ı                           |                         |                  |
| 18     | B-1        | Exhaust gas treatment through gas<br>cooling, carbon injection, and bag<br>filter dedusting for EAF | -                        | -                           | -                             | -                | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                |
| 19     | B-2        | Floating dust control in EAF meltshop                                                               | 1                        | -                           | i                             | -                | -                        | -                           | -                       | -                | -                        | -                           | -                       | 1                |
| 20     | B-3        | Dioxin adsorption by activated carbon for EAF exhaust gas                                           | -                        | -                           | 1                             | -                | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                |
| 21     | B-4        | Dioxin adsorption by mixing EAF<br>exhaust gas with building dedusting<br>gas                       | -                        | -                           | -                             | -                | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                |
| 22     | B-5        | Dioxin absorption by 2 step<br>bagfilter technology for EAF<br>exhaust gas                          | ı                        | =                           | ı                             | -                | -                        | -                           | =                       | -                | -                        | =                           | -1                      | -                |
| 23     | B-6        | PKS charcoal use for EAF                                                                            | -                        | -                           | -                             | -                | -                        | -                           | _                       | -                | -                        | -                           | -                       | -                |
| C. Mat | erial R    | ecycle for Electric Arc Furnace                                                                     |                          | <u> </u>                    | <u> </u>                      | L                | <u> </u>                 | <u> </u>                    |                         | L                | <u> </u>                 | <u> </u>                    |                         | <u> </u>         |
| 24     | C-1        | EAF dust and slag recycling system                                                                  | _                        | -                           | _                             | -                | _                        | -                           | _                       | -                | _                        | _                           | _                       | _                |
| 25     | C-2        | by oxygen-fuel burner EAF slag agglomeration for                                                    | -                        | -                           | -                             | _                | _                        | -                           | -                       | _                | -                        | -                           | -                       | -                |
| D. Ene | rgy Say    | aggregate use ing for Reheating Furnace                                                             |                          |                             |                               |                  |                          |                             |                         |                  |                          |                             |                         |                  |
| 26     | D-1        | Process control for reheating                                                                       | 3.16                     | 1.29                        | 1.86                          | 2.9              | 3.16                     | 0.37                        | 1.94                    | 10.3             | 3.16                     | 2.43                        | 2.44                    | 2.0              |
| 27     | D-1        | furnace<br>Low NOx regenerative burner total                                                        | 11.93                    | 4.89                        | 5.95                          | 2.4              | 11.93                    | 1.42                        | 6.19                    | 8.7              | 11.93                    | 9.19                        | 7.79                    | 1.7              |
| 28     | D-2<br>D-3 | system for reheating furnace High temperature recuperator for                                       | 6.31                     | 2.59                        | 1.12                          | 0.9              | 6.31                     | 0.75                        | 1.16                    | 3.1              | 6.31                     | 4.86                        | 1.46                    | 0.6              |
| 29     | D-3        | reheating furnace Fiber block for insulation of                                                     | 2.46                     | 1.01                        | 1.12                          | 2.2              | 2.46                     | 0.29                        | 1.16                    | 7.9              | 2.46                     | 1.90                        | 1.46                    | 1.5              |
| 30     | D-4        | reheating furnace Induction type billet heater for                                                  | 111.98                   | 29.54                       | 0.74                          | 0.1              | 118.30                   | 7.78                        | 0.77                    | 0.2              | 110.94                   | 65.28                       | 0.97                    | 0.03             |
| 31     | D-7        | direct rolling Oxygen enrichment for combustion air                                                 | 28.49                    | 2.01                        | -                             | -                | 32.22                    | 0.13                        | -                       | -                | 27.88                    | 9.57                        | -                       | -                |
| E. Con | ımon sy    | an<br>stems and General Energy Saving                                                               | s                        | <u> </u>                    |                               | 1                | 1                        | I .                         |                         | 1                | <u> </u>                 | 1                           |                         |                  |
| 32     | E-1        | Inverter (VFD; Variable Frequency                                                                   | -                        | =                           | 5                             | -                | -                        | -                           | -                       | -                | _                        | =                           | -                       | -                |
| 33     | E-2        | Drive) drive for motors Energy monitoring and                                                       | -                        | -                           | -                             | -                | -                        | -                           | -                       | -                | -                        | -                           | -                       | -                |
| 34     | E-3        | management systems  Management of compressed air                                                    | -                        | -                           | -                             | _                | _                        | -                           | _                       |                  | _                        | -                           |                         | -                |
|        |            | delivery pressure optimization Highly efficient combustion system                                   |                          |                             |                               |                  |                          |                             |                         | -                |                          |                             | - 2.02                  |                  |
| 35     | E-4        | for radiant tube burner                                                                             | 5.65                     | 2.32                        | 2.16                          | 1.6              | 5.65                     | 0.67                        | 2.24                    | 5.6              | 5.65                     | 4.36                        | 2.82                    | 1.1              |

