November 2014

ISO14404 User Guide

Calculation method of CO₂ intensity from iron and steel production

Ministry of Economy, Trade and Industry, Japan

> The Japan Iron and Steel Federation

Ministry of Economy, Trade and Industry

1-3-1 Kasumigaseki Chiyoda-ku Tokyo 100-8901 JAPAN Tel: +81 (0)3 3501 1733 Fax: +81 (0)3 3501 0195

The Japan Iron and Steel Federation

Technology, Environment & Energy Division 3-2-10 Nihonbashi-Kayabacho Chuo-ku Tokyo 103-0023 JAPAN Tel: +81 (0)3 3669 4837 Fax: +81 (0)3 3669 0228 Email: kankyou1@jisf.or.jp

Introduction

The International Organization for Standardization (ISO) published a standardized method to calculate CO_2 emission intensity from iron and steel production in March 2013. This is the first standard in the world to define the sector-specific calculation method of CO_2 emission.

ISO14404 is based on the Energy Performance Indicator developed under APP (Asia-Pacific Partnership on Clean Development and Climate) and worldsteel CO₂ Data Collection. Original methodology of APP and worldsteel was optimized for Blast Furnace (ISO14404-1) and Electric Arc Furnace (ISO14404-2). Besides calculating CO₂ emission, users may apply ISO14404 to evaluate energy intensity.

"ISO14404 User Guide" describes the overview of ISO14404 and offers instruction of **"ISO14404 Calculation Tool**", which enables users to calculate CO₂ intensity based on ISO14404 methodology. In addition, by combining **"ISO14404 Technology Introduction Simulator**" and technology references, such as Technologies Customized List, users may simulate energy saving potential of technology introduction.

We believe ISO14404 will be effective especially in the emerging countries where steel production as well as energy consumption in the steel industry will increase. Once steel plants adopt ISO14404, plants will be able to regularly review energy saving condition and thereby establish energy management structure.

Table of Contents

1. Overview of ISO14404	3
2. ISO14404 Calculation Tool - Gap Analysis on Energy / CO_2 intensity -	5
3. ISO14404 Technology Introduction Simulator	10

1. Overview of ISO14404

The International Organization for Standardization (ISO) published a standardized method to calculate CO_2 emission intensity from iron and steel production in March 2013. This is the first standard in the world to define the sector-specific calculation method of CO_2 emission.

There are several features of ISO14404, but in short, **ISO14404 is a simple and universally applicable** calculation method of CO₂ intensity from iron and steel production. Here are the features of ISO14404;

Boundary ISO14404 defines the whole steel plant as CO_2 emission boundary. This type of boundary enables users to assess CO_2 performance regardless of the configuration of the site. Steel production

processes are comprised of a lot of processes and include energy interchanges among the facilities in the site. In order to optimize the energy use in the site, it is crucial to manage and evaluate the energy use as a whole steel plant, not by process-by-process basis.

Calculation The calculation does not require any measurement hardware. Instead, **ISO14404 simply** requires three kinds of used data that all the steel companies record regularly;

- Input Data: Energy source or materials which are supplied to the steel plant
- Output Data: Exported energy source, materials, electricity and steam
- Crude steel production data

 CO_2 emission is calculated by multiplying energy consumption by CO_2 emission factor. By subtracting output CO_2 from input CO_2 , total CO_2 emission in a whole plant is calculated. CO_2 intensity is calculated by dividing the total CO_2 emission by crude steel production. Energy conversion factors are also available to calculate total energy consumption and energy intensity.

Universal Conversion Factors ISO14404 provides default conversion factors for each CO₂ emission source. For electricity, ISO14404 applies a conversion factor that is equivalent to world average electricity since CO₂ emission factors of electricity depend on power supply composition of the area, which is not directly related to energy saving activities of the steel plant.

ISO14404 enables steel plants in the world to evaluate CO_2 intensity by a universally common indicator and thereby contributes to CO_2 emission reduction globally. Users are allowed to apply their own conversion factors if they are credible.

Upstream Concept ISO1440 applies three types of CO_2 emission sources – direct, credit and upstream. **Direct emission** is CO_2 emission from carbon content of the emission sources. **Credit emission** is CO_2 emission of sold materials, which will be exempted from the total CO_2 emission. ISO14404 also calculate CO_2 emission used to produce purchased materials, such as coke, oxygen etc. as "**upstream emission**". By applying upstream emission, CO_2 intensity relating to steel production is accurately evaluated regardless of quality of low material or site configuration, for example whether the plant owns oxygen plant or purchase oxygen.

2. ISO 14404 Calculation Tool

- Gap Analysis on Energy / CO₂ intensity -

Gap Analysis illustrates timely changes of energy and CO_2 intensity, which helps users to **analyze the** energy consumption trend and factors that affect to energy consumption and CO_2 emission, such as operation ratio, production amount, production items, energy sources etc. By collecting monthly/annual data of energy consumption and CO_2 emission, users will understand what triggers energy consumption variation and what kind of countermeasures will be effective.

Preparation

- ISO14404 Calculation Tool
- Input Energy Data Energy source or materials which are supplied to the steel plant
- Output Energy Data Energy carrier or products which are taken outside of the steel plant, such as for sales
- Crude steel production

1. Open ISO14404 Calculation Tool

Choose either ISO14404-1 type (BF) or ISO14404-2 type (EAF)

ISO14404-2 is not designed for EAF-DRI combination. ISO14404-3 (EAF-DRI) is to be developed in the near future.

ISO 14404 Calculation Tool includes four sheets

- Cal Sheet 1st year
 Users fill in the data (input energy data, output energy data and crude steel production) in the sheet
- Cal Sheet 2nd year
- Analysis
- Factor

Same as Cal Sheet 1st year Result will be automatically shown in this sheet after the user fill in the data in Cal Sheet Emission Factors suggested in ISO14404 are already filled in this

sheet for the automatic calculation. If users prefer to use their original emission factors, users need to insert their own emission factors.

2. Select "Cal Sheet 1st year"

3. Fill in necessary information in "Cal Sheet 1st year"

ISO14404 Calculation Sheet for Steel Plant with Blast Furnace (Please fillin colored cells)												
Year of Ass	essm	ent	2012	yyyy	C 4a							
Crude Stee	Proc	luction	7000000	t	Ste	p1			_			
Enerav C	onsu	Imption Source	Unit	Input	o, Ir	nsert "Yea	ar of Ass	essment"	Calculation Direct	on results of CO ₂ Upstream	emission Credit	
	1	Notural gao	3a 3∠, b	50.000	a	nd "Crude	e Steel P	roduction	100700	t-CO ₂ /Plant/y		
	2		10 m ⁻ (stp)	50,000	80.000	0		1520000	0		7916	
Gas fuel	2	Blast furnace das	$10^{3}m^{3}(atp)$		100.000	0		330000	0		1700	
Cas ruci	1	Corex gas	$10^{3}m^{3}(atp)$		100,000	0		330000	0	0	1700	
	5	BOE gas	$10^{3}m^{3}(am)$		10.000	0		84000	0		432	
	5	BOF gas	10 m (stp)	5 000	10,000	198500		04000	14525		402	
	7	Light oil	- III - m ³	2,000		ton?		0	5202			
Liquid fuel	0	Korocono	3	2,000		iepz		0	5202			
	0		- m ⁻	2 000		Inc	ort "Eno	ray 8 Mat	orial Inn			
	9	LPG	l drut	3,000				ryy & wata		ul <u>·</u>		
	10	PE injection cool	dry t	3,500,000		an an	a Energ	y & water		μt <u>·</u>		
	11	BF Injection coal	ary t	1,000,000		łł	acco	ording to	unit	ŀ		
Solid fuel	12	Sinter/BOF coal	ary t	100,000		455 40000			4.170000			
	13	Steam coal	dry t	600,000		15540000		0	1476600	-		
	14	Соке	ary t	200,000		6020000	800000	0	651400	44800		
	15	Charcoal	dry t			0	-	0	0	-		
	16	Limestone	dry t	1,500,000		-		0	660000	-		
	17	Burnt lime	t	500,000		-	2250000	0	-	475000		
Auxiliary	18	Crude dolomite	dry t	10,000		-		0	4710	-		
material	19	Burnt dolomite	t	20,000		-	90000	0	-	22000		
	20	Nitrogen	10 ³ m ³ (stp)	1,000,000	20,000	-	2000000	40000	-	103000	206	
	21	Argon	10 ³ m ³ (stp)			-	C	0	-	0		
	22	Oxygen	10 ³ m ³ (stp)	800,000		-	5520000	0	-	284000		
Energy	23	Electricity	MWh	100,000	1,500,000	-	980000	14700000	-	50400	756000	
camers	24	Steam	t		50,000	-	C	190000	-	0	9750	
	25	Pellets	t	1,000,000		-	2100000	0	-	137000		
Ferrous-	26	Sinter	t			-	-	-	-	0	(
containin	27	Hot metal	t			-	C	0	0	0		
g material	28	Cold iron	t			-	C	0	0	0		
	29	Gas-based DRI	t			-	C	0	0	0		
	30	Coal-based DRI	t			-	C	0	0	0		
	31	Ferro-nickel	t			-	-	-	0	-		
Alloys	32	Ferro-chromium	t			-	-	-	0	-		
	33	Ferro-molybdenum	t			-	-	-	0	-		
Product	34	CO2 for external use	t			-		-	0	-		
and by-	35	Coal tar	t		90,000	0	-	3330000	0	-	30501	
product	36	Benzole (coal light oil)	t		30,000	0	-	1217100	0	-	10146	
Others	Ν	Other emission sources			J	0	12710000	0	0	0	407070	
		50	JD TOTAI			Total Energy	162942260	21411100	Total CO ₂	16706426.9	+ CO /v	
						Consumption	102042200	GJ/y	Emission	10700420.8	1-00 ₂ /y	
						Intensity	23.26	GJ/y/t-crude steel	Intensity	2.39	steel	
				(St	ep3	ergy cons	sumption	/ intensit	y and		
						CO ₂ e	mission vill be au	/ intensity tomatical	of the st ly calcula	teel plant ated		

Here users obtain **Total CO₂ emission and intensity / Total energy consumption and intensity** by using ISO14404. If users have the data on single-year basis only, calculation ends here.

4. Select "Cal Sheet 2nd year" and fill in necessary information in "Cal Sheet 2nd year"

Required data is same as "Cal Sheet 1st year"

ISO14404 Calculation Sheet for Steel Plant with Blast Furnace (2nd year)																
Year of Ass	essm	ent	2013	yyyy		Differe	nt year									
Crude Steel	PIOC		640000		, , ,	Calculation r	esults of energy	consumption	Calculation results of CO ₂ emission							
						Direct	Upstream	Credit	Direct	Upstream	Credit					
Energy Co	onsu	imption Source	Unit	Input	Output		GJ/Plant/y			t-CO ₂ /Plant/y						
	1	Natural gas	10 ^{3a} m ³ (stp ^b)	60,000		2154000	-	0	120840	-	0					
Gas fuel	2	Coke oven gas	10 ³ m ³ (stp)		50,000	0	-	950000	0	-	48850					
Gas fuel	3	Blast furnace gas	10 ³ m ³ (stp)		50,000	0	-	165000	0	-	8500					
	4	Corex gas	10 ³ m ³ (stp)			0	0	0	0	0	0					
	5	BOF gas	10 ³ m ³ (stp)		9,000	0	-	75600	0	-	3888					
Liquid	6	Heavy oil	m ³	4,000		150800	-	0	11628	-	0					
	7	Light oil	m ³	3,000		105300	-	0	7803	-	0					
fuel	8	Kerosene	m ³	1,000		34700	-	0	2481	-	0					
	9	LPG	t	3,000		141900	-	0	8955	-	0					
	10	Coking coal	dry t	3,300,000		106260000	-	0	10094700	-	0					
	11	BF injection coal	dry t	900,000		27990000	-	0	2659500	-	0					
Solid fuel	12	Sinter/BOF coal	dry t	90,000		2637000	-	0	250560	-	0					
Solid Tuel	13	Steam coal	dry t	700,000		18130000	-	0	1722700	-	0					
	14	Coke	dry t	150,000		4515000	600000	0	488550	33600	0					
	15	Charcoal	dry t			0	-	0	0	-	0					
	16	Limestone	dry t	1,300,000		-	-	0	572000	-	0					
	17	Burnt lime	t	450,000		-	2025000	0	-	427500	0					
	18	Crude dolomite	dry t	11,000		-	-	0	5181	-	0					
Auxiliary material	19	Burnt dolomite	t	22,000		-	99000	0	-	24200	0					
matorial	20	Nitrogen	10 ³ m ³ (stp)	1,200,000	40,000	-	2400000	80000	-	123600	4120					
	21	Argon	10 ³ m ³ (stp)			-	0	0	-	0	0					
	22	Oxygen	10 ³ m ³ (stp)	70,000		-	483000	0	-	24850	0					
Energy	23	Electricity	MWh	130,000	1,400,000	-	1274000	13720000	-	65520	705600					
carriers	24	Steam	t		30,000	-	0	114000	-	0	5850					
Energy carriers	25	Pellets	t	1,000,000		-	2100000	0	-	137000	0					
Farraus	26	Sinter	t			-	-	-	-	0	0					
containin	27	Hot metal	t			-	0	0	0	0	0					
g motoriol	28	Cold iron	t			-	0	0	0	0	0					
material	29	Gas-based DRI	t			-	0	0	0	0	0					
	30	Coal-based DRI	t			-	0	0	0	0	0					
	31	Ferro-nickel	t			-	-	-	0	-	0					
Alloys	32	Ferro-chromium	t			-	-	-	0	-	0					
	33	Ferro-molybdenum	t			-	-	-	0	-	0					
Product	34	CO2 for external use	t			-	-	-	0	-	0					
and by-	35	Coal tar	t		60,000	0	-	2220000	0	-	203340					
product	36	Benzole (coal light oil)	t		20,000	0	-	811400	0	-	67640					
Others	Ν	Other emission sources				0	0	0	0	0	0					
		Sub	Total			162118700 Total Energy	8981000	18136000	15944898	836270	1047788					
						Consumption	152963700	G l/v/t-crude steel	Intensity	15733380	t-CO ₂ /y					
1						monalty	23.90	Gury/1-Grude Sidel	monony	2.40	COC2/y/1-Crude Steel					

5. Results of "Gap Analysis" will be automatically provided in "Analysis" sheet

"Gap Analysis" is conveyed for 5 items; Energy Consumption and Intensity, CO₂ Emission and Intensity and Crude Steel Production

6. Analyze energy consumption trend and factors that affect to energy consumption and CO₂ emission

There are many factors that affect to energy consumption and CO_2 emission, such as operation ratio, production amount, production items, energy sources etc. By collecting monthly/annual data of energy consumption and CO_2 emission, **users will understand what triggers energy consumption variation and what kind of countermeasures will be effective**.

3. ISO14404 Technology Introduction Simulator

Users may consider applying energy saving technologies to enhance energy efficiency in a steel plant. In that case, **ISO14404 Technology Introduction Simulator** will be a great help. With this tool, users will be able to visualize an impact of effects of technology introduction at a steel plant.

Preparation

- ISO14404 Technology Introduction Simulator
- Technology References such as Technologies Customized List
- Reference value of input energy, output energy and crude steel production

1. Choose an energy saving technology from technology references (ex. Technologies Customized List) and confirm energy saving and CO₂ reduction effect provided in the reference.

Energy saving potential is provided either as kWh/t of product or GJ/t of product

2. Open ISO14404 Technology Introduction Simulator

Choose either ISO14404-1 type (BF) or ISO14404-2 type (EAF)

ISO 14404 Calculation Tool includes three sheets

- Cal Sheet Users fill in the data (input energy, output energy and crude steel production) in this sheet
- Simulation Result will be automatically shown in this sheet after the user fill in the data in Cal Sheet
- Factor Emission Factors suggested in ISO14404 are already filled in this sheet for the automatic calculation. If users prefer to use their original emission factors, users need to insert their own emission factors.

3. Select "Cal Sheet"

Year of Asse		rt		2007									
Courte Sheet I		ri ina											
						Calculation	results of energy	consumption	Calculat	ion results of CO ₄	emission		
Energy Consumption Source			Unit	Innut	0.000	Direct Upstream		Credit	Direct Upstream Cr				
							GJ/Plant/y			t-CO ₂ /Plantly			
	1	Natural gas	10 m (stp)			•	-		•				
	2	Coke oven gas	10°m²(stp)		<u> </u>	•			0				
Gas fuel	3	Blast fumace gas	10*m*(stp)		<u> </u>	•	-	•		-			
	*	Corex gas	10*m*(stp)				•			•			
	•	BUP gas	10°m*(stp)										
	•	Heavy oil	- m-										
Liquid	-	Cight Oil	- m-										
	•	Kerusene	m-										
	10	Colden coel	1		<u> </u>								
Solid fuel	44	EE intection cost	day t						-				
	40	Sister/BOE coal	day t						-				
	40	Steam coal	day t						-				
	14	Coke	dry t										
	15	Charcoal	dry t										
	16	Limestone	dry t										
	17	Burnt lime											
	12	Carde dolomite	dev t										
Auxillary	19	Burnt dolomite											
material	20	Nitrogen	102-00-00-00										
	21	Argon	10 ² m ² (stn)										
	22	Oxygen	10 ² m ² (stn)										
Energy	23	Electricity	MWb										
carriers	24	Steam											
	25	Pellets											
	26	Sinter											
Ferrous-	27	Hot metal											
containin	28	Cold Iron											
g material	29	Gas-based DRI											
	30	Coal-based DRI	t						0				
	31	Ferro-nickel	t										
Alloys	32	Ferro-chromium	t										
	33	Ferro-molybdenum	t										
Product	34	CO2 for external use	t										
and by-	35	Coal tar	t						0				
product	36	Zenzole (cosi light oi)	t						0				
Others	N	Other emission sources	-										
		Sub 1	Total			•		•	0				
	_					Total Energy Consur Intensity		GUly Gulyt-crude steel	Total CO ₂ Emission Intensity		1-COyly 1-COyly11-prus		
					/								

4. Fill in necessary information in "Cal Sheet"

Same as "ISO14404 Calculation Tool" (page7)

ISO144	ISO14404 Calculation Sheet for Steel Plant with Blast Furnace (Please fillin colored cells)														
Year of Ass	essm		2012	уууу	040										
Crude Stee	Proc	duction	7000000	t	Ste	p1			_						
						sort "Vos	or of Acco	semont"	Calculatio	on results of CO ₂	emission				
Energy C	วทรเ	Imption Source	Unit	Input	OL		a Ctool D	-ssinention	Direct	t-CO ₂ /Plant/v	Credit				
	1	Natural gas	10 ^{3a} m ³ (stn ^b)	50.000	a		Sleer Pi	ounction	100700		C				
	2	Coke oven gas	$10^{3} m^{3} (stp)$		80.000	0	-	1520000	0		78160				
Gas fuel	3	Blast furnace gas	$10^{3} m^{3} (stp)$		100,000	0	-	330000	0	-	17000				
	4	Corex gas	$10^{3} m^{3} (stp)$			0	0	0	0	0	0				
	5	BOF gas	$10^{3} m^{3} (stp)$		10,000	0	-	84000	0	-	4320				
	6	Heavy oil	m ³	5,000		198500	-	0	14535	-	C				
Liquid	7	Light oil	m ³	2,000	T S	ten2		0	5202	-	C				
fuel	8	Kerosene	m ³	800		top2					C				
	9	LPG	t	3.000		Ins	ert "Fne	rav & Ma	terial Inp	ut"	0				
	10	Coking coal	drv t	3,500,000		an	d "Enera	v & Mate	rial Outru	it" ·	0				
	11	BF injection coal	dry t	1,000,000				ording to	unit		0				
	12	Sinter/BOF coal	dry t	100,000		H	accu	Jung to	um	4111t -					
Solid fuel	13	Steam coal	drv t	600.000		15540000	-	0	1476600		0				
	14	Coke	drv t	200.000		6020000	800000	0	651400	44800	0				
	15	Charcoal	dry t			0	-	0	0	-	0				
	16	Limestone	drv t	1.500.000		-	-	0	660000		0				
	17	Burnt lime	t	500.000		-	2250000	0	-	475000	0				
	18	Crude dolomite	drv t	10.000		-	-	0	4710		0				
Auxiliary material	19	Burnt dolomite	t	20.000		-	90000	0	-	22000	0				
	20	Nitrogen	10 ³ m ³ (stn)	1.000.000	20.000	-	2000000	40000		103000	2060				
	21	Argon	$10^{3} \text{m}^{3}(\text{stp})$.,,		-	0	0	_	0	0				
	22	Oxvgen	$10^{3} m^{3} (stn)$	800.000		-	5520000	0	-	284000	0				
Enormy	23	Electricity	MWh	100.000	1.500.000	-	980000	14700000		50400	756000				
carriers	24	Steam	t		50.000	-	0	190000	-	0	9750				
	25	Pellets	t	1.000.000	,	-	2100000	0	_	137000	0				
	26	Sinter	t	.,,		-	-	-	_	0	0				
Ferrous-	27	Hot metal	t			-	0	0	0	0	0				
g	28	Cold iron	t			-	0	0	0	0	0				
material	29	Gas-based DRI	t			-	0	0	0	0	0				
	30	Coal-based DRI	t			-	0	0	0	0	0				
	31	Ferro-nickel	t			-	-	-	0	-	0				
Alloys	32	Ferro-chromium	t			-	-	-	0	-	0				
,	33	Ferro-molvbdenum	t			-	-	-	0		0				
	34	CO2 for external use	t			-	-	-	0	-	0				
Product and by-	35	Coal tar	t		90,000	0	-	3330000	0	-	305010				
product	36	Benzole (coal light oil)	t		30,000	0	-	1217100	0	-	101460				
Others	N	Other emission sources	_			0	0	0	0	0	0				
		Si	ub Total	·	J	170513360	13740000	21411100	16863986.8	1116200	1273760				
						Total Energy Consumption	162842260	GJ/y	Total CO ₂ Emission	16706426.8	t-CO ₂ /y				
						Intensity	23.26	GJ/v/t-crude steel	Intensity	2.39	t-CO ₂ /y/t-crude				
						-		,	· · · · · · · · · · · · · · · · · · ·		steel				
					St	ep3					_				
						Fne	erav cons	sumption	/ intensit	v and					
							mission	/ intoneity	, interior , of the effective of the ef	had nlant					
						00 ₂ e	vill be au	tomatical		atod					
					l	, v		unatical	iy calcula		J				

5. Open "Simulation" sheet

After users fill in the data in "ISO14404 Cal Sheet", data are automatically reflected to "Before Technology Introduction".

6. Fill in energy saving effect provided in the technology reference (also refer to page 11)

			Cu	stomization Co	nditions	for Indi	ian Stee	l Ind	lustr	у											
		A ; Effect of Technologies Introduction						C; Conditions in India [*2]													
		Electricity Savings	Fuel Savings	CO2 Reduction	Co- benefits	ency Level	Diffusio n Rate of	Needs for Technologies Introduction					Barrier against Technologies Introduction			Counter measures expected					
No.	Title of Technology	kWh/t of product	GJ/t of product	kg- CO2/t of product		of Technol ogy in Japan [*1]	Technolog y in 7 Major Steel Companies ,% [*4]	Electricity Saving	CO2 Reduction	Productivity	Quality	Water Saving	Financial	Technical	Retrofitting	Financial	Technical				
10	Ecological and Economical Arc Furnace	150 kWh/t-steel	-	135 /t-steel	DXN, Dust, Noise	F	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				

7. Results of "Gap Analysis" will be automatically provided in "Analysis" sheet

